Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (11): 84-86    DOI: 10.11925/infotech.1003-3513.2007.11.18
Current Issue | Archive | Adv Search |
Construct Seamless University Library Office Network System by Using RouterOS
Su Dongchu
(Library of Pingdingshan College, Pingdingshan  467000,China)
Export: BibTeX | EndNote (RIS)      

By investigating current circumstance of university library office network, the author finds out that the “interoperability” between Cernet and other network is the main factor which affects the efficiency of university library network, and proposes the feasibility of constructing secure and seamless library network by using RouterOS. The result reveals that the program has a lot of advantages such as“low investment”,“high efficiency”,“high security”and“flexible configuration”etc.

Key wordsVPN      RouterOS      Network      Dual route      Library     
Received: 13 September 2007      Published: 25 November 2007


Corresponding Authors: Su Dongchu     E-mail:
About author:: Su Dongchu

Cite this article:

Su Dongchu. Construct Seamless University Library Office Network System by Using RouterOS. New Technology of Library and Information Service, 2007, 2(11): 84-86.

URL:     OR

[1] 王健. 利用VPN技术实现高校图书馆数字资源的远程访问[J]. 图书馆建设,2006(5):50-52.
[2] 王朗. 利用VPN技术实现合并图书馆分馆互联[J]. 现代图书情报技术,2004(5):35-37,34.
[3] MikroTik RouterOS 介绍[EB/OL]. [2007-09-04].
[4] 葛中泽,李志强. RouterOS在校园网中的应用[J]. 鄂州大学学报,2007,14(2):8-10,16.
[5] ARP绑定设置[EB/OL]. [2007-09-25].

[1] Lu Yunmeng,Liu Tiezhong. Diffusion Model for Tacit Knowledge of Scientific Cooperation Network Based on Relevance: Case Study of Major Sci-Tech Projects[J]. 数据分析与知识发现, 2021, 5(9): 10-20.
[2] Zhou Zeyu,Wang Hao,Zhao Zibo,Li Yueyan,Zhang Xiaoqin. Construction and Application of GCN Model for Text Classification with Associated Information[J]. 数据分析与知识发现, 2021, 5(9): 31-41.
[3] Fan Tao,Wang Hao,Wu Peng. Sentiment Analysis of Online Users' Negative Emotions Based on Graph Convolutional Network and Dependency Parsing[J]. 数据分析与知识发现, 2021, 5(9): 97-106.
[4] Wang Ruolin, Niu Zhendong, Lin Qika, Zhu Yifan, Qiu Ping, Lu Hao, Liu Donglei. Disambiguating Author Names with Embedding Heterogeneous Information and Attentive RNN Clustering Parameters[J]. 数据分析与知识发现, 2021, 5(8): 13-24.
[5] Wang Qinjie, Qin Chunxiu, Ma Xubu, Liu Huailiang, Xu Cunzhen. Recommending Scientific Literature Based on Author Preference and Heterogeneous Information Network[J]. 数据分析与知识发现, 2021, 5(8): 54-64.
[6] Gu Yaowen, Zhang Bowen, Zheng Si, Yang Fengchun, Li Jiao. Predicting Drug ADMET Properties Based on Graph Attention Network[J]. 数据分析与知识发现, 2021, 5(8): 76-85.
[7] Zhang Le, Leng Jidong, Lv Xueqiang, Cui Zhuo, Wang Lei, You Xindong. RLCPAR: A Rewriting Model for Chinese Patent Abstracts Based on Reinforcement Learning[J]. 数据分析与知识发现, 2021, 5(7): 59-69.
[8] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[9] Ma Yingxue,Zhao Jichang. Patterns and Evolution of Public Opinion on Weibo During Natural Disasters: Case Study of Typhoons and Rainstorms[J]. 数据分析与知识发现, 2021, 5(6): 66-79.
[10] Gao Yilin,Min Chao. Comparing Technology Diffusion Structure of China and the U.S. to Countries Along the Belt and Road[J]. 数据分析与知识发现, 2021, 5(6): 80-92.
[11] Yu Bengong,Zhu Xiaojie,Zhang Ziwei. A Capsule Network Model for Text Classification with Multi-level Feature Extraction[J]. 数据分析与知识发现, 2021, 5(6): 93-102.
[12] Lu Linong,Zhu Zhongming,Zhang Wangqiang,Wang Xiaochun. Cross-database Knowledge Integration and Fingerprint of Institutional Repositories with Lingo3G Clustering Algorithm[J]. 数据分析与知识发现, 2021, 5(5): 127-132.
[13] Chen Wenjie,Wen Yi,Yang Ning. Fuzzy Overlapping Community Detection Algorithm Based on Node Vector Representation[J]. 数据分析与知识发现, 2021, 5(5): 41-50.
[14] Han Pu,Zhang Zhanpeng,Zhang Mingtao,Gu Liang. Normalizing Chinese Disease Names with Multi-feature Fusion[J]. 数据分析与知识发现, 2021, 5(5): 83-94.
[15] Li Feifei,Wu Fan,Wang Zhongqing. Sentiment Analysis with Reviewer Types and Generative Adversarial Network[J]. 数据分析与知识发现, 2021, 5(4): 72-79.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938