Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (10): 46-53    DOI: 10.11925/infotech.2096-3467.2018.0812
Current Issue | Archive | Adv Search |
Early Warning for Civil Aviation Security Checks Based on Deep Learning
Feng Wengang1,2,3(), Huang Jing2,4
1School of Criminal Investigation and Counter Terrorism, People’s Public Security University of China, Beijing 100038, China
2Research Centre for Civil Aviation Security, People’s Public Security University of China, Beijing 100038, China
3Police Science Postdoctoral Research Station, People’s Public Security University of China, Beijing 100038, China
4Public Security Bureau, Civil Aviation Administration of China, Beijing 100710, China
Download: PDF (1028 KB)   HTML ( 4
Export: BibTeX | EndNote (RIS)      

[Objective]This paper proposes a hierarcical classification screening method, aiming to improve the airport security system and passenger experience. [Methods] We proposed a feature deep learning method based on the civil aviation and public security databases. Then, we trained the deep neural network of three layers: time seriers, space seriers, and environmental features to obtain the joint representing feature of passenger risk factors. Finally, we generated the early warning models for passenger security check. [Results] The proposed early warning models could relieve the pressure of civil aviation security check. [Limitaions] More research is needed to examine the proposed model with data from small airports. [Conclusions] The early-warning model based on deep learning could effectively improve work efficiency of airport security checks and passanger experience.

Key wordsCivil Aviation Security      Questionnaire Survey      Deep Learning      Flight Warning     
Received: 22 July 2018      Published: 12 November 2018
ZTFLH:  G359 D631  

Cite this article:

Feng Wengang,Huang Jing. Early Warning for Civil Aviation Security Checks Based on Deep Learning. Data Analysis and Knowledge Discovery, 2018, 2(10): 46-53.

URL:     OR

序号 旅客信息风险预警项 xi得分 ${{\alpha }_{i}}$赋值
X1 公安相关重点人员 200 1
X2 编造、故意传播涉及民航空防安全虚假恐怖信息 150 1
X3 在航空器内盗窃他人物品 150 1
X4 使用伪造、变造或冒用他人乘机身份证件、乘机凭证 150 1
X5 随身携带或托运国家法律、法规规定的危险品、违禁品和管制物品的; 在随身携带或托运行李中故意藏匿国家规定以外属于民航禁止、限制运输物品 100 1
X6 堵塞、强占、冲击值机柜台、安检通道、登机口(通道) 50 1
X7 妨碍或煽动他人妨碍机组、安检、值机等民航工作人员履行职责, 实施或威胁实施人身攻击 50 1
X8 强行登占、拦截航空器, 强行闯入或冲击航空器驾驶舱、跑道和机坪 50 1
X9 在航空器内使用明火、吸烟、违规使用电子设备, 不听劝阻 40 1
X10 强占座位、行李架, 打架斗殴、寻衅滋事, 故意损坏、盗窃、擅自开启航空器或航空设施设备等扰乱客舱秩序 30 1
X11 其他 30 1
[1] CAAC. 2017年民航行业发展统计公报[R]. 中国民用航空局, 2018.
[1] (CAAC. 2017 Civil Aviation Industry Development Statistics Bulletin[R]. Civil Aviation Administration of China, 2018.)
[2] CAAC. 2016年民用航空安全保卫事件信息统计报告[R]. 中国民用航空局公安局, 2017.
[2] (CAAC. 2016 Civil Aviation Security Incident Statistics Report [R]. Public Security Bureau of Civil Aviation Administration of China, 2017.)
[3] Enders W, Sandler T.Is Transnational Terrorism Becoming More Threatening? A Time-Series Investigation[J]. Journal of Conflict Resolution, 2000, 44(3): 307-332.
doi: 10.1177/0022002700044003002
[4] Lum C.Does the ‘Race of Places’ Influence Police Officer Decision Making?[R]. W.E.B. DuBois Fellowship,National Institute of Justice, 2010.
[5] Clarke R.Building a Safer Society: Strategic Approaches to Crime Prevention: Situational Crime Prevention[J]. Crime and Justice, 1995, 19: 91-150.
doi: 10.1086/449230
[6] Clarke R, Newman G.Outsmarting the Terrorists[R]. Westport,CT: Praeger Security International, 2006.
[7] Eck J.Preventing Crime at Places Evidence-based Crime Prevention[M]. New York, NY: Routledge, 2002.
[8] US Department of Justice. Federal Bureau of Investigation. Crime in the United States[EB/OL].(2010).[2018-07-08]. .
[9] Alves L G, Ribeiro H V, Lenzi E K, et al.Distance to the Scaling Law: A Useful Approach for Unveiling Relationships Between Crime and Urban Metrics[J]. PLoS One, 2013, 8(8): 1-8.
doi: 10.1371/journal.pone.0069580 pmid: 24348946
[10] Chen P, Yuan H Y, Shu X.Forecasting Crime Using the ARIMA Model[C]// Proceedings of the 5th IEEE International Conference on Fuzzy Systems and Knowledge Discovery. 2008: 627-630.
[11] Gerber M S.Predicting Crime Using Twitter and Kernel Density Estimation[J]. Decision Support Systems, 2014, 61(1): 115-125.
doi: 10.1016/j.dss.2014.02.003
[12] Gorr W, Olligschlaeger A, Thompson Y.Short-term Forecasting of Crime[J]. International Journal of Forecasting, 2003, 19(4): 579-594.
doi: 10.1016/S0169-2070(03)00092-X
[13] Liao R, Wang X, Li L, et al.A Novel Serial Crime Prediction Model Based on Bayesian Learning Theory[C]// Proceedings of the 2010 IEEE International Conference on Machine Learning and Cybernetics. 2010: 1757-1762.
[14] Mohler G O, Short M B, Brantingham P J, et al.Self-Exciting Point Process Modeling of Crime[J]. Journal of the American Statistical Association, 2011, 106(493): 100-108.
doi: 10.1198/jasa.2011.ap09546
[15] Wang P, Mathieu R, Ke J, et al.Predicting Criminal Recidivism with Support Vector Machine[C]// Proceedings of the 2010 IEEE International Conference on Management and Service Science. 2010: 1-9.
[16] Anderson C A, Anderson D C.Ambient Temperature and Violent Crime: Tests of the Linear and Curvilinear Hypotheses[J]. Journal of Personality and Social Psychology,2004, 46(1): 91-97.
doi: 10.1037//0022-3514.46.1.91 pmid: 6694060
[1] Zhou Zeyu,Wang Hao,Zhao Zibo,Li Yueyan,Zhang Xiaoqin. Construction and Application of GCN Model for Text Classification with Associated Information[J]. 数据分析与知识发现, 2021, 5(9): 31-41.
[2] Zhao Danning,Mu Dongmei,Bai Sen. Automatically Extracting Structural Elements of Sci-Tech Literature Abstracts Based on Deep Learning[J]. 数据分析与知识发现, 2021, 5(7): 70-80.
[3] Xu Yuemei, Wang Zihou, Wu Zixin. Predicting Stock Trends with CNN-BiLSTM Based Multi-Feature Integration Model[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[4] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[5] Zhong Jiawa,Liu Wei,Wang Sili,Yang Heng. Review of Methods and Applications of Text Sentiment Analysis[J]. 数据分析与知识发现, 2021, 5(6): 1-13.
[6] Zhang Guobiao,Li Jie. Detecting Social Media Fake News with Semantic Consistency Between Multi-model Contents[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
[7] Chang Chengyang,Wang Xiaodong,Zhang Shenglei. Polarity Analysis of Dynamic Political Sentiments from Tweets with Deep Learning Method[J]. 数据分析与知识发现, 2021, 5(3): 121-131.
[8] Feng Yong,Liu Yang,Xu Hongyan,Wang Rongbing,Zhang Yonggang. Recommendation Model Incorporating Neighbor Reviews for GRU Products[J]. 数据分析与知识发现, 2021, 5(3): 78-87.
[9] Hu Haotian,Ji Jinfeng,Wang Dongbo,Deng Sanhong. An Integrated Platform for Food Safety Incident Entities Based on Deep Learning[J]. 数据分析与知识发现, 2021, 5(3): 12-24.
[10] Zhang Qi,Jiang Chuan,Ji Youshu,Feng Minxuan,Li Bin,Xu Chao,Liu Liu. Unified Model for Word Segmentation and POS Tagging of Multi-Domain Pre-Qin Literature[J]. 数据分析与知识发现, 2021, 5(3): 2-11.
[11] Lv Xueqiang,Luo Yixiong,Li Jiaquan,You Xindong. Review of Studies on Detecting Chinese Patent Infringements[J]. 数据分析与知识发现, 2021, 5(3): 60-68.
[12] Cheng Bin,Shi Shuicai,Du Yuncheng,Xiao Shibin. Keyword Extraction for Journals Based on Part-of-Speech and BiLSTM-CRF Combined Model[J]. 数据分析与知识发现, 2021, 5(3): 101-108.
[13] Li Danyang, Gan Mingxin. Music Recommendation Method Based on Multi-Source Information Fusion[J]. 数据分析与知识发现, 2021, 5(2): 94-105.
[14] Yu Chuanming, Zhang Zhengang, Kong Lingge. Comparing Knowledge Graph Representation Models for Link Prediction[J]. 数据分析与知识发现, 2021, 5(11): 29-44.
[15] Han Pu, Zhang Wei, Zhang Zhanpeng, Wang Yuxin, Fang Haoyu. Sentiment Analysis of Weibo Posts on Public Health Emergency with Feature Fusion and Multi-Channel[J]. 数据分析与知识发现, 2021, 5(11): 68-79.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938