Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (11): 73-79    DOI: 10.11925/infotech.2096-3467.2018.0254
Current Issue | Archive | Adv Search |
Predicting Transactions Among Agents in Patent Transfer Weighted Networks for New Energy
Wu Yuying(), Sun Ping, He Xijun, Jiang Guorui
College of Economics and Management, Beijing University of Technology, Beijing 100124, China
Research Base of Beijing Modern Manufacturing Development, Beijing 100124, China
Download: PDF (540 KB)   HTML ( 2
Export: BibTeX | EndNote (RIS)      

[Objective] This paper examines the structure of weighted network for patent transfers as well as the characteristics of agents, aiming to predict transaction opportunities and promote the connection of technology supply and demand. [Methods] First, we constructed a weighted network for patented technology transactions based on data from 2012 to 2016. Then, we used the entropy method to combine its structure and contents. Finally, we used the BP neural network to predict transaction opportunities and weights. [Results] The prediction accuracy by the proposed method, which combined the structure index RA and the content index Cosine, was the highest. The prediction error was also reduced by using the real and structure weights of the network to predict the link weight. [Limitations] More research is needed to study the Node properties and network evolution mechanism. [Conclusions] The link prediction method has a higher precision, which help us find potential supply and demand agents of the technology patent transfers.

Key wordsTransaction Opportunities Prediction      Weighted Network      Structural Similarity      Content Similarity      BP Neural Network     
Received: 12 March 2018      Published: 11 December 2018
ZTFLH:  G306  

Cite this article:

Wu Yuying,Sun Ping,He Xijun,Jiang Guorui. Predicting Transactions Among Agents in Patent Transfer Weighted Networks for New Energy. Data Analysis and Knowledge Discovery, 2018, 2(11): 73-79.

URL:     OR

预测模型 指标 ARC AUC
1 RA 0.0363 0.9054
2 LP 0.0651 0.8818
预测模型 指标 ARC AUC
1 RA+Cosine 0.0569 0.9428
2 RA+IPC 0.0853 0.8706
3 RA+Cosine+IPC 0.8706 0.9297
未来链接 相似度 融合权重
国家电网公司 湖北省电力公司电力科学研究院 1.000 0.806
国网天津市电力公司 江苏中科宇泰光能科技有限公司 0.733 0.675
杭州南都电池有限公司 杭州南都能源科技有限公司 0.694 0.717
江苏博特新材料有限公司 国网湖北省电力公司经济技术研究院 0.659 0.679
江苏省建筑科学研究院有限公司 江苏博特新材料有限公司 0.659 0.635
中海油东方石化有限责任公司 中海油新能源(海南)生物能源化工有限公司 0.540 0.654
广东高航知识产权运营有限公司 国家电网公司 0.535 0.483
深圳市海川实业股份有限公司 深圳海川工程科技有限公司 0.522 0.592
鸿准精密工业股份有限公司 富士迈半导体精密工业(上海)有限公司 0.509 0.516
深圳市比克动力电池有限公司 郑州比克电池有限公司 0.489 0.681
北京维信诺科技有限公司 昆山维信诺显示技术有限公司 0.488 0.619
富士迈半导体精密工业(上海)有限公司 富准精密工业(深圳)有限公司 0.480 0.659
中海石油炼化有限责任公司 河海大学常州校区 0.469 0.441
中海石油炼化有限责任公司 上海宏力半导体制造有限公司 0.469 0.554
中海油东方石化有限责任公司 国网江苏省电力公司 0.469 0.442
中海油新能源(海南)生物能源化工有限公司 许继电气股份有限公司 0.469 0.549
国网浙江省电力公司 国网浙江省电力公司杭州供电公司 0.459 0.485
国网电力科学研究院武汉南瑞有限责任公司 中国电力科学研究院 0.450 0.523
南京南瑞集团公司 中国电力科学研究院 0.447 0.391
广东华博企业管理咨询有限公司 北京科技大学 0.443 0.400
[1] 马荣康, 刘凤朝. 基于专利许可的新能源技术转移网络演变特征研究[J]. 科学学与科学技术管理, 2017, 38(6): 65-76.
[1] (Ma Rongkang, Liu Fengchao.Research on the Evolution of Technology Transfer Network in New Energy Fields Based on Patent Licensing[J]. Science of Science and Management of S.& T, 2017, 38(6): 65-76.)
[2] 朱相丽, 谭宗颖, 万昊. 识别有技术转移潜力的专利方法综述[J]. 图书情报工作, 2016, 60(8): 132-138, 145.
[2] (Zhu Xiangli, Tan Zongying, Wan Hao.Research Review on Patent Analysis Methods of Identifying Technology’s Transfer Potential[J]. Library and Information Service, 2016, 60(8): 132-138, 145.)
[3] 吕伟民, 王小梅, 韩涛. 结合链路预测和ET机器学习的科研合作推荐方法研究[J]. 数据分析与知识发现, 2017, 1(4): 38-45.
[3] (Lv Weimin, Wang Xiaomei, Han Tao.Recommending Scientific Research Collaborators with Link Prediction and Extremely Randomized Trees Algorithm[J]. Data Analysis and Knowledge Discovery, 2017, 1(4): 38-45.)
[4] Lü L, Zhou T.Link Prediction in Complex Networks: A Survey[J]. Physical A: Statistical Machanics and Its Applications, 2011, 290(6): 1150-1170.
doi: 10.1016/j.physa.2010.11.027
[5] Symeonidis P, Tiakas E, Manolopoulos Y.Transitive Node Similarity for Link Prediction in Social Networks with Positive and Negative Links[C]// Proceedings of the 4th ACM Conference on Recommender Systems. ACM, 2010: 183-190.
[6] Bai M, Hu K, Tang Y.Link Prediction Based on a Semi-Local Similarity Index[J]. Chinese Physics B, 2011, 20(12) : 498-504.
doi: 10.1088/1674-1056/20/12/128902
[7] Zhu M, Cao T, Jiang X.Using Clustering Coefficient to Construct Weighted Networks for Supervised Link Prediction[J]. Social Network Analysis & Mining, 2014, 4(1): 1-8.
doi: 10.1007/s13278-014-0215-3
[8] Lü L, Zhou T. Link Prediction in Weighted Networks: The Role of Weak Ties[J]. EPL, 2010, 89(1): Article No.18001.
doi: 10.1209/0295-5075/89/18001
[9] Pan L, Zhou T, Lv L, et al. Predicting Missing Links and Identifying Spurious Links via Likelihood Analysis[J]. Scientific Reports, 2016, 6(5): Article No. 22955.
[10] Sett N, Singh S R, Nandi S.Influence of Edge Weight on Node Proximity Based Link Prediction Methods: An Empirical Analysis[J]. Neurocomputing, 2016, 172(3): 71-83.
doi: 10.1016/j.neucom.2014.11.089
[11] He Y L, Liu J N K, Hu Y X,et al. OWA Operator Based Link Prediction Ensemble for Social Network[J]. Expert Systems with Applications, 2015, 42(1): 21-50.
doi: 10.1016/j.eswa.2014.07.018
[12] 郭景峰, 刘苗苗, 罗旭. 加权网络中基于多路径节点相似性的链接预测[J]. 浙江大学学报: 工学版, 2016, 50(7): 1347-1352.
[12] (Guo Jingfeng, Liu Miaomiao, Luo Xu.Link Prediction Based on Similarity of Nodes of Multipath in Weighted Social Networks[J]. Journal of Zhejiang University: Engineering Science, 2016, 50(7): 1347-1352.)
[13] 吴梦蝶, 唐雁. 基于主题模型的有向社交网络链接预测方法[J]. 西南大学学报: 自然科学版, 2014, 36(1): 152-158.
[13] (Wu Mengdie, Tang Yan.A Topic Model-Based Method of Link Prediction for Directed Social Network[J]. Journal of Southwest University: Natural Science, 2014, 36(1): 152-158.)
[14] Wu M, Tang Y.Topic Model Based Link Prediction for Directed Social Network[J]. Journal of Computational Information Systems, 2014, 10(11): 4765-4774.
[15] Xie X, Li Y, Zhang Z, et al.A Joint Link Prediction Method for Social Network[A]// Intelligent Computation in Big Data Era[M]. Berlin, Heidelberg: Springer, 2015, 503: 56-64.
[16] 汪俊, 岳峰, 王刚, 等. 科研社交网络中基于链接预测的专家推荐研究[J]. 情报杂志, 2015, 34(6): 151-157.
doi: 10.3969/j.issn.1002-1965.2015.06.027
[16] (Wang Jun, Yue Feng, Wang Gang, et al.Expert Recommendation in Scientific Social Network Based on Link Prediction[J]. Journal of Intelligence, 2015, 34(6): 151-157.)
doi: 10.3969/j.issn.1002-1965.2015.06.027
[17] 侯银秀, 李伟卿, 王伟军, 等. 基于用户偏好与商品属性情感匹配的图书个性化推荐研究[J]. 数据分析与知识发现, 2017, 1(8): 9-17.
[17] (Hou Yinxiu, Li Weiqing, Wang Weijun, et al.Personalized Book Recommendation Based on User Preferences and Commodity Features[J]. Data Analysis and Knowledge Discovery, 2017, 1(8): 9-17.)
[18] Aicher C, Jacobs A Z, Clauset A.Learning Latent Block Structure in Weighted Networks[J]. Journal of Complex Networks, 2014, 3(2): 1-28.
[19] Zhao J, Miao L, Yang J, et al. Prediction of Links and Weights in Networks by Reliable Routes[J]. Scientific Reports, 2015, 5: Article No.12261.
[20] Cui Y, Zhang L, Wang Q, et al.Heterogeneous Network Linkage-weight Based Link Prediction in Bipartite Graph for Personalized Recommendation[J]. Procedia Computer Science, 2016, 91: 953-958.
doi: 10.1016/j.procs.2016.07.119
[21] Wang L, Hu K, Tang Y.Robustness of Link-Prediction Algorithm Based on Similarity and Application to Biological Networks[J]. Current Bioinformatics, 2014, 9(5): 1-7.
doi: 10.2174/157489360901140120160332
[22] 周朴雄, 张兵荣, 赵龙文. 基于BP神经网络的情境化信息推荐服务研究[J]. 情报科学, 2016, 34(3): 71-75.
[22] (Zhou Puxiong, Zhang Bingrong, Zhao Longwen.Research on Contextual Information Recommendation Service Based on BP Neural Network[J]. Information Science, 2016, 34(3): 71-75.)
[23] Sharma U, Minocha B.Link Prediction in Social Networks: A Similarity Score Based Neural Network Approach[C]// Proceedings of the 2nd International Conference on Information and Communication Technology for Competitive Strategies. ACM, 2016:90.
[24] 闫晶, 毕强, 李洁, 等. 图书馆数字资源聚合质量预测模型构建——基于改进遗传算法和BP神经网络[J]. 数据分析与知识发现, 2017, 1(12): 49-62.
[24] (Yan Jing, Bi Qiang, Li Jie, et al.Construction of Aggregation Quality Predicting Model for Digital Resource in Library——Based on Improved Genetic Algorithm and BP Neural Network[J]. Data Analysis and Knowledge Discovery, 2017, 1(12): 49-62.)
[25] Lv L, Jin C H, Zhou T. Similarity Index Based on Local Paths for Link Prediction of Complex Networks[J]. Physical Review E, 2009, 80: Article No. 046122.
doi: 10.1103/PhysRevE.80.046122 pmid: 19905405
[26] Das R, Zaheer M, Dyer C.Gaussian LDA for Topic Models with Word Embeddings[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics. 2015.
[27] 任海英, 于立婷, 黄鲁成. 基于链接预测的科学研究机会发现方法研究[J]. 情报杂志, 2016, 35(10): 53-58.
doi: 10.3969/j.issn.1002-1965.2016.10.010
[27] (Ren Haiying, Yu Liting, Huang Lucheng.A Method for Discovering Scientific Research Opportunities Based on Link Prediction[J]. Journal of Intelligence, 2016, 35(10): 53-58.)
doi: 10.3969/j.issn.1002-1965.2016.10.010
[28] Basri R, Jacobs D.Lambertian Reflectance and Linear Subspaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 218-233.
doi: 10.1109/TPAMI.2003.1177153
[29] Soundarajan S, Hopcroft J.Using Community Information to Improve the Precision of Link Prediction Methods[C]// Proceedings of the 21st International Conference on World Wide Web. ACM, 2012: 607-608.
[30] 李亮, 吴瑞明. 消除评价指标相关性的权值计算方法[J]. 系统管理学报, 2009, 18(2): 221-225.
[30] (Li Liang, Wu Ruiming.A Study on Eliminating Correlation of Evaluation Index and Obtaining Modified Weights[J]. Journal of Systems & Management, 2009, 18(2): 221-225.)
[31] 陈伟, 李传云, 周文, 等. 基于新能源汽车的加权专利合作网络研究[J]. 情报学报, 2016, 35(6): 563-572.
doi: 10.3772/j.issn.1000-0135.2016.006.001
[31] (Chen Wei, Li Chuanyun, Zhou Wen, et al.Research on the Weighted Patent Cooperation Network Based on New Energy Vehicles[J]. Journal of the China Society for Scientific and Technical Information, 2016, 35(6): 563-572.)
doi: 10.3772/j.issn.1000-0135.2016.006.001
[1] Zhenyu He,Xiangxiang Dong,Qinghua Zhu. Classifying Baidu Encyclopedia Entries with User Behaviors[J]. 数据分析与知识发现, 2019, 3(6): 117-122.
[2] Xiang Li,Xiaodong Qian. Research on Impact of Commodity Online Evaluation for Consumption Convergence[J]. 数据分析与知识发现, 2019, 3(3): 102-111.
[3] Wenxiu Hu,Li Ma,Jianfeng Zhang. Identifying Ultra-short-term Market Manipulation with Stock Intraday Trading Weighted Network[J]. 数据分析与知识发现, 2019, 3(10): 118-126.
[4] Yan Jing,Bi Qiang,Li Jie,Wang Fu. Construction of Aggregation Quality Predicting Model for Digital Resource in Library ——Based on Improved Genetic Algorithm and BP Neural Network[J]. 数据分析与知识发现, 2017, 1(12): 49-62.
[5] Nie Hui Huang Guipeng. The Application and Implementation of Tree Edit Distance in Web Information Extraction[J]. 现代图书情报技术, 2010, 26(5): 29-34.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938