Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (4): 117-125    DOI: 10.11925/infotech.2096-3467.2018.0662
Current Issue | Archive | Adv Search |
A Conditional Walk Quadripartite Graph Based Personalized Recommendation Algorithm
Yiwen Zhang1(),Chenkun Zhang1,Anju Yang1,Chengrui Ji1,Lihua Yue2
1Institute of Information Engineering, Anhui Xinhua University, Hefei 230088, China
2School of Computer, University of Science and Technology of China, Hefei 230026, China
Download: PDF (780 KB)   HTML ( 2
Export: BibTeX | EndNote (RIS)      

[Objective] By mining the relation characteristics between users and items, or between users and categories, this Paper extracts user preferences to optimize recommendation effect. [Methods] This paper extracts user rating and items degree attribute, mines user preferences, and puts forward the walk condition of User-Item bipartite graph; The category-User-Project-Category quadripartite graph is established by mapping User-Item-Category tripartite graph to the User-Category bipartite graph. The personalized recommendation method for user preferences through items and categories is proposed. [Results] Choosing MovieLens ratings data set as the source data, respectively comparing the experimental difference based on bipartite graph, weighted bipartite graph, tripartite graph and quadripartite graph, the results show that the Precision rate, MAE, recall rate, and coverage have been respectively optimized with this proposed method. [Limitations] Due to Movielens lack of critical textual data of users for movies, it is hard to analyze user preferences through the semantic. [Conclusions] This research analyzed user preferences through user ratings and degree attribute, it can be determined that the recommendation effect of quadripartite graph based on conditional walk is great.

Key wordsRecommendation System      Quadripartite Graph      Conditional Walk      Personalized Recommendation     
Received: 21 June 2018      Published: 29 May 2019

Cite this article:

Yiwen Zhang,Chenkun Zhang,Anju Yang,Chengrui Ji,Lihua Yue. A Conditional Walk Quadripartite Graph Based Personalized Recommendation Algorithm. Data Analysis and Knowledge Discovery, 2019, 3(4): 117-125.

URL:     OR

[1] Wang H, Wang N, Yeung D Y.Collaborative Deep Learning for Recommender Systems[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014:1235-1244.
[2] 孟祥武, 刘树栋, 张玉洁, 等. 社会化推荐系统研究[J]. 软件学报, 2015, 26(6): 1356-1372.
[2] (Meng Xiangwu, Liu Shudong, Zhang Yujie, et al.Research on Social Recommender Systems[J]. Journal of Software, 2015, 26(6): 1356-1372.)
[3] Mooney R J, Roy L.Content-based Book Recommending Using Learning for Text Categorization[C]//Proceedings of the 5th ACM Conference on Digital Libraries. 2000: 195-204.
[4] Breese J S, Heckerman D, Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering[C]// Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. 1998: 43-52.
[5] Zhuang F, Luo D, Yuan N J, et al.Representation Learning with Pair-wise Constraints for Collaborative Ranking[C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining. ACM, 2017: 567-575.
[6] 刘淇, 陈恩红. 结合二部图投影与排序的协同过滤[J]. 小型微型计算机系统, 2010, 31(5): 835-839.
[6] (Liu Qi, Chen Enhong.Collaborative Filtering Through Combining Bipartite Graph Projection and Ranking[J]. Journal of Chinese Computer Systems, 2010, 31(5): 835-839.)
[7] 孙林, 吴相林, 罗松涛, 等. 基于二分图资源分配动力学的推荐排序研究[J]. 计算机工程与设计, 2010, 31(23): 5032-5035.
[7] (Sun Lin, Wu Xianglin, Luo Songtao, et al.Recommendation Ranking Based on Resource Allocation Dynamics on Bipartite Graph[J]. Computer Engineering and Design, 2010, 31(23): 5032-5035.)
[8] 张怡文, 王冉, 程家兴. 基于用户兴趣度的改进二部图随机游走推荐方法[J]. 计算机应用与软件, 2015, 32(6): 76-79.
[8] (Zhang Yiwen, Wang Ran, Cheng Jiaxing.Improved Recommendation Algorithm of Bipartite Graph Random Walk Based on User Interest Degree[J]. Computer Applications and Software, 2015, 32(6): 76-79.)
[9] 王明佳, 韩景倜. 基于条件型游走二部图协同过滤算法[J]. 计算机应用研究, 2017, 34(12): 3685-3688.
[9] (Wang Mingjia, Han Jingti.Collaborative Filtering Algorithm Based on Conditional Walk Bipartite Graph[J]. Application Research of Computers, 2017, 34(12): 3685-3688.)
[10] Shang M S, Zhang Z K, Zhou T, et al.Collaborative Filtering with Diffusion-Based Similarity on Tripartite Graphs[J]. Physica A: Statistical Mechanics & Its Applications, 2012, 389(6): 1259-1264.
[11] 张艳梅, 王璐, 曹怀虎, 等. 基于用户-兴趣-项目三部图的推荐算法[J]. 模式识别与人工智能, 2015, 28(10): 913-921.
[11] (Zhang Yanmei, Wang Lu, Cao Huaihu, et al.Recommendation Algorithm Based on User-Interest-Item Tripartite Graph[J]. Pattern Recognition and Artificial Intelligence, 2015, 28(10): 913-921.)
[12] 廖志芳, 李玲, 刘丽敏, 等. 三部图张量分解标签推荐算法[J]. 计算机学报, 2012, 35(12): 2625-2632.
[12] (Liao Zhifang, Li Ling, Liu Limin, et al.A Tripartite Decomposition of Tensor for Social Tagging[J]. Chinese Journal of Computers, 2012, 35(12): 2625-2632.)
[13] 陈洁敏, 李建国, 汤非易, 等. 融合“用户-项目-用户兴趣标签图”的协同好友推荐算法[J]. 计算机科学与探索, 2018, 12(1): 92-100.
[13] (Chen Jiemin, Li Jianguo, Tang Feiyi, et al.Combining User-Item-Tag Tripartite Graph and Users Personal Interests for Friends Recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(1): 92-100.)
[14] 陈梅梅, 薛康杰. 基于改进张量分解模型的个性化推荐算法研究[J]. 数据分析与知识发现, 2017, 1(3): 38-45.
[14] (Chen Meimei, Xue Kangjie.Personalized Recommendation AlgorithmBased on Modified Tensor Decomposition Model[J]. Data Analysis and Knowledge Discovery, 2017, 1(3): 38-45.)
[15] 王明佳, 韩景倜. 基于条件型游走二部图协同过滤算法[J].计算机应用研究, 2017, 34(12): 3685-3688.
[15] (Wang Mingjia, Han Jingti.Collaborative filtering algorithm based on conditional walk bipartite graph[J]. Application Research of Computers, 2017, 34(12): 3685-3688.)
[16] Harper F M, Konstan J A. The MovieLens Datasets: History and Context[J]. ACM Transactions on Interactive Intelligent Systems, 2016, 5(4): Article No.19.
[17] Li J, Tang Y, Chen J.Leveraging Tagging and Rating for Recommendation: RMF Meets Weighted Diffusion on Tripartite Graphs[J]. Physica A: Statistical Mechanics & Its Applications, 2017, 483: 398-411.
[1] Wu Yanwen, Cai Qiuting, Liu Zhi, Deng Yunze. Digital Resource Recommendation Based on Multi-Source Data and Scene Similarity Calculation[J]. 数据分析与知识发现, 2021, 5(11): 114-123.
[2] Ding Hao, Ai Wenhua, Hu Guangwei, Li Shuqing, Suo Wei. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[3] Yang Heng,Wang Sili,Zhu Zhongming,Liu Wei,Wang Nan. Recommending Domain Knowledge Based on Parallel Collaborative Filtering Algorithm[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[4] Yan Wen,Lijian Ma,Qingtian Zeng,Wenyan Guo. POI Recommendation Based on Geographic and Social Relationship Preferences[J]. 数据分析与知识发现, 2019, 3(8): 30-39.
[5] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[6] Hao Ding,Shuqing Li. Personalized Recommendation Based on Predictive Analysis of User’s Interests[J]. 数据分析与知识发现, 2019, 3(11): 43-51.
[7] Li Jie,Yang Fang,Xu Chenxi. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[8] Liu Dongsu,Huo Chenhui. Recommending Image Based on Feature Matching[J]. 数据分析与知识发现, 2018, 2(3): 49-59.
[9] Chen Meimei,Xue Kangjie. Personalized Recommendation Algorithm of Multi-faceted Trust Tensor Based on Tag Clustering[J]. 数据分析与知识发现, 2017, 1(5): 94-101.
[10] Chen Meimei,Xue Kangjie. Personalized Recommendation Algorithm Based on Modified Tensor Decomposition Model[J]. 数据分析与知识发现, 2017, 1(3): 38-45.
[11] Tan Xueqing,Zhang Lei,Huang Cuicui,Luo Lin. A Collaborative Filtering and Recommendation Algorithm Using Trust of Domain-Experts and Similarity[J]. 现代图书情报技术, 2016, 32(7-8): 101-109.
[12] Xie Qi,Cui Mengtian. Group Similarity Based Hybrid Web Service Recommendation Algorithm[J]. 现代图书情报技术, 2016, 32(6): 80-87.
[13] Zhu Ting, Qin Chunxiu, Li Zuhai. Research on Collaborative Filtering Personalized Recommendation Method Based on User Classification[J]. 现代图书情报技术, 2015, 31(6): 13-19.
[14] Gao Huming, Zhao Fengyue. A Hybrid Recommendation Method Combining Collaborative Filtering and Content Filtering[J]. 现代图书情报技术, 2015, 31(6): 20-26.
[15] Lu Xiaoming. Research on a Lightweight Academic Library Context-aware Recommendation Service Platform Based on GimbalTM[J]. 现代图书情报技术, 2015, 31(3): 101-107.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938