Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (5): 11-18    DOI: 10.11925/infotech.2096-3467.2018.0871
Current Issue | Archive | Adv Search |
Predicting Stock Trends Based on News Events
Mengji Zhang(),Wanyu Du,Nan Zheng
School of Management Science and Engineering, Dongbei University of Finance and Economics, Dalian 116025, China
Download: PDF (1577 KB)   HTML ( 17
Export: BibTeX | EndNote (RIS)      

[Objective] This paper tries to predict stock trends with the help of deep learning models, financial data and related news events. [Methods] First, we built a classification model for news events. Then, we used the recurrent neural networks to construct a forecasting model for stock trends based on news, capital flows and corporate financial reports. [Results] The prediction accuracy was improved by the proposed model (76.22% and 77.36% for the mining and pharmaceutical manufacturing industries). [Limitations] We did not examine the different impacts of news headlines and full-texts on stock market. We only chose news events from the past one year, which needs to be expanded. [Conclusions] News events could improve the accuracy of predicting stock trends.

Key wordsStock Trend Forecast      Deep Learning      Text Mining     
Received: 06 August 2018      Published: 03 July 2019

Cite this article:

Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events. Data Analysis and Knowledge Discovery, 2019, 3(5): 11-18.

URL:     OR

[1] Birz G. Stale Economic News, Media and the Stock Market[J]. Journal of Economic Psychology, 2017, 61(3): 384-412. .
[2] Nassirtoussi A K, Aghabozorgi S, Wah T Y, et al.Text Mining of News-headlines for FOREX Market Prediction: A Multi-layer Dimension Reduction Algorithm with Semantics and Sentiment[J]. Expert Systems with Applications, 2015, 42(1): 306-324.
[3] Li X, Wang C, Dong J, et al.Improving Stock Market Prediction by Integrating both Market News and Stock Prices[C]// Proceedings of International Conference on Database and Expert Systems Applications. Springer Berlin Heidelberg, 2011: 279-293.
[4] Schumaker R P, Chen H. Textual Analysis of Stock Market Prediction Using Breaking Financial News: The AZFinText System[J]. ACM Transactions on Information Systems, 2009, 27(2): Article No. 12.
[5] Tetlock P C, Macskassy S.More than Words: Quantifying Language to Measure Firms’ Fundamentals[J]. The Journal of Finance, 2008, 63(3): 1437-1467.
[6] 孔翔宇, 毕秀春, 张曙光. 财经新闻与股市预测——基于数据挖掘技术的实证分析[J]. 数理统计与管理, 2016, 35(2):215-224.
[6] (Kong Xiangyu, Bi Xiuchun, Zhang Shuguang.Financial News and Stock Market Forecast——An Empirical Analysis Based on Data Mining Technology[J]. Mathematical Statistics and Management, 2016, 35(2): 215-224.)
[7] Basu S.Investment Performance of Common Stocks in Relation to Their Price-Earnings Ratios: A Test of the Efficient Market Hypothesis[J]. Journal of Finance, 1977, 32(3): 663-682.
[8] Fama E F, French K R.Size and Book-to-Market Factors in Earnings and Returns[J]. Journal of Finance, 2012, 50(1): 131-155.
[9] Kim Y. Convolutional Neural Networks for Sentence Classification[OL]. arXiv Preprint, arXiv: 1408.5882, 2014.
[10] Multi-Class-Text-Classification-CNN-RNN [OL]. [2017-02-17]..
[11] Gers F A, Schmidhuber J, Cummins F.Learning to Forget: Continual Prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451-2471.
[12] Sundermeyer M, Ney H, Schlüter R.LSTM Neural Networks for Language Modeling[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(3): 517-529.
[13] Leven S.The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting[J]. Neural Networks, 1996, 9(3): 543-544.
[14] 张建波, 李振. 行业因素对我国股票价格波动率的影响研究[J]. 山东大学学报: 哲学社会科学版, 2014(1): 88-93.
[14] (Zhang Jianbo, Li Zhen.The Study of the Industry Factors on the Volatility of China’s Stock Price[J]. Journal of Shandong University: Philosophy and Social Sciences, 2014(1): 88-93.)
[15] Yu H, Chen R, Zhang G.A SVM Stock Selection Model within PCA[J]. Procedia Computer Science, 2014, 31: 406-412.
[16] Shynkevich Y, McGinnity T M, Coleman S A, et al. Forecasting Movements of Health-Care Stock Prices Based on Different Categories of News Articles Using Multiple Kernel Learning[J]. Decision Support Systems, 2016, 85(C): 74-83.
[1] Zhou Zeyu,Wang Hao,Zhao Zibo,Li Yueyan,Zhang Xiaoqin. Construction and Application of GCN Model for Text Classification with Associated Information[J]. 数据分析与知识发现, 2021, 5(9): 31-41.
[2] Zhao Danning,Mu Dongmei,Bai Sen. Automatically Extracting Structural Elements of Sci-Tech Literature Abstracts Based on Deep Learning[J]. 数据分析与知识发现, 2021, 5(7): 70-80.
[3] Xu Yuemei, Wang Zihou, Wu Zixin. Predicting Stock Trends with CNN-BiLSTM Based Multi-Feature Integration Model[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[4] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[5] Zhong Jiawa,Liu Wei,Wang Sili,Yang Heng. Review of Methods and Applications of Text Sentiment Analysis[J]. 数据分析与知识发现, 2021, 5(6): 1-13.
[6] Xu Guang,Ren Ming,Song Chengyu. Extracting China’s Economic Image from Western News[J]. 数据分析与知识发现, 2021, 5(5): 30-40.
[7] Zhang Guobiao,Li Jie. Detecting Social Media Fake News with Semantic Consistency Between Multi-model Contents[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
[8] Dai Bing,Hu Zhengyin. Review of Studies on Literature-Based Discovery[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[9] Cheng Bin,Shi Shuicai,Du Yuncheng,Xiao Shibin. Keyword Extraction for Journals Based on Part-of-Speech and BiLSTM-CRF Combined Model[J]. 数据分析与知识发现, 2021, 5(3): 101-108.
[10] Chang Chengyang,Wang Xiaodong,Zhang Shenglei. Polarity Analysis of Dynamic Political Sentiments from Tweets with Deep Learning Method[J]. 数据分析与知识发现, 2021, 5(3): 121-131.
[11] Feng Yong,Liu Yang,Xu Hongyan,Wang Rongbing,Zhang Yonggang. Recommendation Model Incorporating Neighbor Reviews for GRU Products[J]. 数据分析与知识发现, 2021, 5(3): 78-87.
[12] Hu Haotian,Ji Jinfeng,Wang Dongbo,Deng Sanhong. An Integrated Platform for Food Safety Incident Entities Based on Deep Learning[J]. 数据分析与知识发现, 2021, 5(3): 12-24.
[13] Zhang Qi,Jiang Chuan,Ji Youshu,Feng Minxuan,Li Bin,Xu Chao,Liu Liu. Unified Model for Word Segmentation and POS Tagging of Multi-Domain Pre-Qin Literature[J]. 数据分析与知识发现, 2021, 5(3): 2-11.
[14] Lv Xueqiang,Luo Yixiong,Li Jiaquan,You Xindong. Review of Studies on Detecting Chinese Patent Infringements[J]. 数据分析与知识发现, 2021, 5(3): 60-68.
[15] Li Danyang, Gan Mingxin. Music Recommendation Method Based on Multi-Source Information Fusion[J]. 数据分析与知识发现, 2021, 5(2): 94-105.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938