Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (6): 1-11    DOI: 10.11925/infotech.2096-3467.2018.0767
Current Issue | Archive | Adv Search |
Spatio-Temporal Characteristics of WMTS Access Sessions
Ru Li1,Rui Li1,2,Jie Jiang3(),Huayi Wu1,2
1(State Key Laboratory of Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China)
2(Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China)
3(National Geomatics Center of China, Beijing 100830, China)
Download: PDF (3071 KB)   HTML ( 24
Export: BibTeX | EndNote (RIS)      

[Objective] This paper explores the spatio-temporal statistical characteristics of users’ visits to Web Map Tile Service (WMTS). [Methods] First, we identified the WMTS sessions and extracted the targets based on an efficient algorithm. Then, we studied the temporal features of user access sessions with daily session numbers, requests and duration of each session, as well as assess speed per tile. For spatial characteristics, we described the relationship between users’ locations and their access targets, such as provinces, cities, and distances. [Results] The users’ WMTS sessions possessed power-law distribution, and most of them were brief and efficient with clear objectives. Users from provinces with better information infrastructure tended to have more centralized and deeper WMTS sessions. Most of the WMTS sessions searched for targets within the same province or city, while 30% of the targets were within 43 km of the users’ city centers. [Limitations] The data was collected from users who access WMTS frequently, which needs to be expanded. [Conclusions] Describing users’ access characteristics from session granularity, helps us understand users’ geographical information needs.

Key wordsWMTS      Session Identification      Access Target      Spatial Distance Classification      Spatiotemporal Statistics and Analysis     
Received: 15 July 2018      Published: 15 August 2019

Cite this article:

Ru Li,Rui Li,Jie Jiang,Huayi Wu. Spatio-Temporal Characteristics of WMTS Access Sessions. Data Analysis and Knowledge Discovery, 2019, 3(6): 1-11.

URL:     OR

[1] Li R, Guo R, Xu Z, et al.A Prefetching Model Based on Access Popularity for Geospatial Data in a Cluster-Based Caching System[J]. International Journal of Geographical Information Science, 2012, 26(10): 1831-1844.
[2] Talagala N, Asami S, Patterson D, et al.The Art of Massive Storage: A Web Image Archive[J]. Computer, 2000, 33(11): 22-28.
[3] Fisher D.Hotmap: Looking at Geographical Attention[J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6): 1184-1191.
[4] 王浩, 潘少明, 彭敏, 等. 数字地球中影像数据的Zipf-like访问分布及应用分析[J]. 武汉大学学报: 信息科学版, 2010, 35(3): 356-359.
[4] (Wang Hao, Pan Shaoming, Peng Min, et al.Zipf-like Distribution and Its Application to Image Data Tile Request in Digital Earth[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 356-359.)
[5] Kwan M.GIS Methods in Time-Geographic Research: Geocomputation and Geovisualization of Human Activity Patterns[J]. Urban Planning International, 2010, 86(4): 267-280.
[6] 吴华意, 李锐, 周振, 等. 公共地图服务的群体用户访问行为时序特征模型及预测[J]. 武汉大学学报: 信息科学版, 2015, 40(10): 1279-1286.
[6] (Wu Huayi, Li Rui, Zhou Zhen, et al.Research and Prediction on Time-Sequence Characteristics of Group-User Access Behavior in Public Map Service[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1279-1286.)
[7] Li R, Fan J, Jiang J, et al.Spatiotemporal Correlation in WebGIS Group-User Intensive Access Patterns[J]. International Journal of Geographical Information Systems, 2017, 31(1): 36-55.
[8] Li R, Fan J, Wu H, et al.Group-User Access Patterns and Tile Prefetching Based on a Time-Sequence Distribution in Cloud-Based GIS[J]. Computers, Environment and Urban Systems, 2018, 69: 17-27.
[9] Pan S, Chong Y, Zhang H, et al.A Global User-Driven Model for Tile Prefetching in Web Geographical Information Systems[J]. PLoS One, 2017, 12(1): e0170195.
[10] Wu D, Qiao R, Li Y.A Study on Location-Based Mobile Map Search Behavior[J]. Program Electronic Library and Information Systems, 2016, 50(3): 246-269.
[11] Henrich A, Luedecke V.Characteristics of Geographic Information Needs[C]// Proceedings of the 4th ACM Workshop on Geographical Information Retrieval. ACM, 2007: 1-6.
[12] Gan Q, Attenberg J, Markowetz A, et al.Analysis of Geographic Queries in a Search Engine Log[C]// Proceedings of the 1st International Workshop on Location and the Web. ACM, 2008: 49-56.
[13] Jones R, Zhang W V, Rey B, et al.Geographic Intention and Modification in Web Search[J]. International Journal of Geographical Information Science, 2008, 22(3): 229-246.
[14] Zhang W V, Rey B, Stipp E, et al.Geomodification in Query Rewriting[C]// Proceedings of the 3rd ACM Workshop on Geographic Information Retrieval. 2006.
[15] Takahashi K, Pramudiono I, Kitsuregawa M.Geo-Word Centric Association Rule Mining[C]// Proceedings of the 6th International Conference on Mobile Data Management. ACM, 2005: 273-280.
[16] Xiao X, Luo Q, Li Z, et al.A Large-Scale Study on Map Search Logs[J]. ACM Transactions on the Web, 2010, 4(3): 53-56.
[17] 陈迪, 张鹏, 杨洁艳, 等. 在线地图服务日志的大数据分析[J]. 小型微型计算机系统, 2015, 36(1): 33-38.
[17] (Chen Di, Zhang Peng, Yang Jieyan, et al.Big Data Analysis of Web Map Service Log[J]. Journal of Chinese Computer Systems, 2015, 36(1): 33-38.)
[18] Grace L K J, Maheswari V, Nagamalai D. Analysis of Web Logs and Web User in Web Mining[J]. International Journal of Network Security & Its Applications, 2011, 3(1): 99-110.
[19] Pamutha T, Chimphlee S, Kimpan C, et al.Data Preprocessing on Web Server Log Files for Mining Users Access Patterns[J]. International Journal of Research and Reviews in Wireless Communications, 2012, 2(2): 92-98.
[20] 周爱武, 程博, 李孙长, 等. Web日志挖掘中的会话识别方法[J]. 计算机工程与设计, 2010, 31(5): 936-938.
[20] (Zhou Aiwu, Cheng Bo, Li Sunchang, et al.Method of Session Identification in Web Log Mining[J]. Computer Engineering and Design, 2010, 31(5): 936-938.)
[21] 张毅. Web日志挖掘中会话识别方法研究[J]. 计算机应用与软件, 2010, 27(6): 92-94.
[21] (Zhang Yi.On Method of Session Identification in Web Log Mining[J]. Computer Applications and Software, 2010, 27(6): 92-94.)
[22] 王末, 王卷乐. Web环境下地学数据共享用户行为模式分析[J]. 地球信息科学学报, 2016, 18(9): 1174-1183.
[22] (Wang Mo, Wang Juanle.A Study on the User Behavior of Geoscience Data Sharing Based on Web Usage Mining[J]. Journal of Geo-Information Science, 2016, 18(9): 1174-1183.)
[23] Zhu J, Chen J.Research on Method for Session Identification in Web Log Mining[J]. Computer Simulation, 2008, 44(8): 179-182.
[24] Zhuang L, Kou Z, Zhang C.Session Identification Based on Time Interval in Web Log Mining[C] // Proceedings of the International Conference on Intelligent Information Processing, 2004, 163: 389-396.
[25] Sengottuvelan P, Lokeshkumar R, Gopalakrishnan T.An Improved Session Identification Approach in Web Log Mining for Web Personalization[J]. Journal of Internet Technology, 2017, 18(4): 723-730.
[26] Jiang Y, Li Y, Yang C, et al. Reconstructing Sessions from Data Discovery and Access Logs to Build a Semantic Knowledge Base for Improving Data Discovery[J]. International Journal of Geo-Information, 2016, 5(5): Article No.54.
[27] 刘钊, 谢美慧, 田琨, 等. 基于协同Kriging插值和首尾分割法的PM2.5自然城市提取[J]. 清华大学学报: 自然科学版, 2017, 57(5): 555-560.
[27] (Liu Zhao, Xie Meihui, Tian Kun, et al.Classification of PM2.5 for Natural Cities Based on co-Kriging and Head/Tail Break Algorithms[J]. Journal of Tsinghua University: Science and Technology, 2017, 57(5): 555-560.)
[28] Jiang B.Head/Tail Breaks for Visualization of City Structure and Dynamics[J]. Cities, 2015, 43(3): 69-77.
[29] Jiang B.Wholeness as a Hierarchical Graph to Capture the Nature of Space[J]. International Journal of Geographical Information Systems, 2015, 29(9): 1632-1648.
[30] 周涛, 韩筱璞, 闫小勇, 等. 人类行为时空特性的统计力学[J]. 电子科技大学学报, 2013, 42(4): 481-540.
[30] (Zhou Tao, Han Xiaopu, Yan Xiaoyong, et al.Statistical Mechanics on Temporal and Spatial Activities of Human[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(4): 481-540.)
No related articles found!
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938