|
|
Finding Geographic Locations of Popular Online Topics |
Liu Yuwen1,2( ),Wang Kai1 |
1School of Health Management, Bengbu Medical College, Bengbu 233030, China 2College of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China |
|
|
Abstract [Objective] This paper analyzes the geographic distributions of popular online topics, aiming to provide decision-making support for public opinion management and social governance.[Methods] First, we introduced location parameters of comments into the LDA model, and proposed a region-oriented topic recognition model (RO-LDA). Then, we used this model to label texts, topics, locations and vocabularies with location tags. Third, we created text-topics, topic-words and topic-locations matrices. Finally, we identified trending topics and their geographic distributions with the help of topic-words and topic-locations distributions.[Results] We examined the proposed model with real data set. The F value reached 80.05%, which is higher than the existing models.[Limitations] The location tags were set manually, which impacted the accuracy of region recognition.[Conclusions] The proposed method could identify geographic features of trending topics effectively.
|
Received: 11 June 2019
Published: 26 April 2020
|
|
Corresponding Authors:
Liu Yuwen
E-mail: lywzyfy@163.com
|
[1] |
Momtazi S . Unsupervised Latent Dirichlet Allocation for Supervised Question Classification[J]. Information Processing and Management, 2018,54(3):380-393.
|
[2] |
徐月梅, 吕思凝, 蔡连侨 , 等. 结合卷积神经网络和Topic2Vec的新闻主题演变分析[J]. 数据分析与知识发现, 2018,2(9):31-41.
|
[2] |
( Xu Yuemei, Lv Sining, Cai Lianqiao , et al. Analyzing News Topic Evolution with Convolutional Neural Networks and Topic2Vec[J]. Data Analysis and Knowledge Discovery, 2018,2(9):31-41.)
|
[3] |
Chen L, Zhang H Z, Jose J M , et al. Topic Detection and Tracking on Heterogeneous Information[J]. Journal of Intelligent Information Systems, 2018,51(1):115-137.
|
[4] |
付鹏, 林政, 袁凤程 , 等. 基于卷积神经网络和用户信息的微博话题追踪模型[J]. 模式识别与人工智能, 2017,30(1):73-80.
|
[4] |
( Fu Peng, Lin Zheng, Yuan Fengcheng , et al. Convolutional Neural Network and User Information Based Model for Microblog Topic Tracking[J]. Pattern Recognition and Artificial Intelligence, 2017,30(1):73-80.)
|
[5] |
周亚东, 刘晓明, 杜友田 , 等. 一种网络话题的内容焦点迁移识别方法[J]. 计算机学报, 2015,38(2):261-271.
|
[5] |
( Zhou Yadong, Liu Xiaoming, Du Youtian , et al. A Method for Identifying the Evolutionary Focuses of Online Social Topics[J]. Chinese Journal of Computers, 2015,38(2):261-271.)
|
[6] |
何跃, 朱灿, 朱婷婷 , 等. 微博热点话题情感趋势研究[J]. 情报理论与实践, 2018,41(7):155-160.
|
[6] |
( He Yue, Zhu Can, Zhu Tingting , et al. Research on the Emotional Tendency of Hot Topics in Micro-blogs[J]. Information Studies: Theory & Application, 2018,41(7):155-160.)
|
[7] |
廖海涵, 王曰芬, 关鹏 . 微博舆情传播周期中不同传播者的主题挖掘与观点识别[J]. 图书情报工作, 2018,62(19):77-85.
|
[7] |
( Liao Haihan, Wang Yuefen, Guan Peng . Topic Mining and Viewpoint Recognition of Different Communicators in the Transmission Cycle of Micro-blog Public Opinion[J]. Library and Information Service, 2018,62(19):77-85.)
|
[8] |
余冲, 李晶, 孙旭东 , 等. 基于词嵌入与概率主题模型的社会媒体话题识别[J]. 计算机工程, 2017,43(12):184-191.
|
[8] |
( Yu Chong, Li Jing, Sun Xudong , et al. Social Media Topic Recognition Based on Word Embedding and Probabilistic Topic Model[J]. Computer Engineering, 2017,43(12):184-191.)
|
[9] |
方小飞, 黄孝喜, 王荣波 , 等. 基于LDA模型的移动投诉文本热点话题识别[J]. 数据分析与知识发现, 2017,1(2):19-27.
|
[9] |
( Fang Xiaofei, Huang Xiaoxi, Wang Rongbo , et al. Identifying Hot Topics from Mobile Complaint Texts[J]. Data Analysis and Knowledge Discovery, 2017,1(2):19-27.)
|
[10] |
Blei D M, Ng A Y, Jordan M I . Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003,3:993-1022.
|
[11] |
李平, 张路遥, 曹霞 , 等. 基于潜在主题的混合上下文推荐算法[J]. 电子与信息学报, 2018,40(4):957-963.
|
[11] |
( Li Ping, Zhang Luyao, Cao Xia , et al. Hybrid Context Recommendation Algorithm Based on Latent Topic[J]. Journal of Electronics and Information Technology, 2018,40(4):957-963.)
|
[12] |
Zou Y P, Ouyang J H, Li X M . Supervised Topic Models with Weighted Words: Multi-Label Document Classification[J]. Frontiers of Information Technology & Electronic Engineering, 2018,19(4):513-523.
|
[13] |
李维皓, 曹进, 李晖 . 基于位置服务隐私自关联的隐私保护方案[J]. 通信学报, 2019,40(5):57-66.
|
[13] |
( Li Weihao, Cao Jin, Li Hui . Privacy Self-Correlation Privacy-Preserving Scheme in LBS[J]. Journal on Communications, 2019,40(5):57-66.)
|
[14] |
鲜学丰, 崔志明, 赵朋朋 , 等. 基于主题模型的位置感知订阅发布系统[J]. 计算机科学, 2018,45(3):167-172.
|
[14] |
( Xian Xuefeng, Cui Zhiming, Zhao Pengpeng , et al. Location-awareness Publication Subscription System Based on Topic Model[J]. Computer Science, 2018,45(3):167-172.)
|
[15] |
Twinandilla S, Adhy S, Surarso B , et al. Multi-Document Summarization Using K-Means and Latent Dirichlet Allocation (LDA)-Significance Sentences[J]. Procedia Computer Science, 2018,135:663-670.
|
[16] |
Chen M L, Wang Q, Li X L . Patch-based Topic Model for Group Detection[J]. Science China Information Sciences, 2017, 60: Article No. 113101.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|