Please wait a minute...
Data Analysis and Knowledge Discovery  2020, Vol. 4 Issue (12): 120-135    DOI: 10.11925/infotech.2096-3467.2020.0264
Current Issue | Archive | Adv Search |
Group Recommendation Algorithms Based on Implicit Representation Learning of Multi-attribute Ratings
Zhang Chunjin1,Guo Shenghui2,Ji Shujuan2(),Yang Wei2,Yi Lei2
1Network Security and Information Office, Shandong University of Science and Technology, Qingdao 266590, China
2Shandong Provincial Key Laboratory of Wisdom Mine Information Technology, Shandong University of Science and Technology, Qingdao 266590, China
Download: PDF (2008 KB)   HTML ( 6
Export: BibTeX | EndNote (RIS)      

[Objective] This paper addresses the issues facing user representation learning due to the sparsity of their ratings, aiming to improve the performance of recommendation algorithm. [Methods] We proposed a neural network-based method to learn the implicit representation of multi-attribute ratings from user groups and individual items. Then, we conducted two group-oriented recommendations by matching their learned representations with preferences as well as calculating the attraction of each item. [Results] We examined our method with TripAdvisor data set and found the accuracy and time performance of the proposed algorithms were better than the typical multi-attribute ones and group ones. Compared to the personalized recommendation algorithm, the accuracies of our algorithms were slightly worse, but their online and offline running time was reduced by more than 30% and 50%, repectively. The recommendation results from user group based algorithm outperformed the item based one. [Limitations] We generated virtual groups based on clustering algorithm and their preferences were aggregated more effecitvely than the real world ones. [Conclusions] The proposed algorithms effectively improve the recommendation results.

Key wordsGroup Reccommendation Algorithms      Multi-attribute Ratings      Implicit Representation Learning      Rating Matrix      Nerual Network     
Received: 20 March 2020      Published: 25 December 2020
ZTFLH:  TP393  
Corresponding Authors: Ji Shujuan     E-mail:

Cite this article:

Zhang Chunjin,Guo Shenghui,Ji Shujuan,Yang Wei,Yi Lei. Group Recommendation Algorithms Based on Implicit Representation Learning of Multi-attribute Ratings. Data Analysis and Knowledge Discovery, 2020, 4(12): 120-135.

URL:     OR

Schematic Diagram of the Framework
GMURec Algorithm Framework
GMIRec Algorithm Framework
属性 原始数据 预处理后数据
用户 536 952 20 443
项目 3 945 1 755
数据 796 958 262 300
稀疏度 99.96% 99.3%
Data Preprocessing
Silhouette Coefficient in Different Groups
参数 出现位置
梯度下降算法中的学习率α 0.15 公式(6)和公式(7)
梯度下降算法中误差阈值和迭代次数 0.01和100 000 梯度下降算法
调整因子σ 0.80 公式(9)和公式(11)
Parameter Settings
marcoF1of the Neural Network Structure in GMURec
marcoF1of the Neural Network Structure in GMURec
marcoF1of the Neural Network Structure in GMIRec
marcoF1of the Neural Network Structure in GMIRec
算法名称 简称 面向个体用户 面向群体用户 单属性 多属性
基于神经网络的群组推荐算法 ATTGRec
基于最小痛苦策略的群组推荐算法 LP
PromoRec算法 PromoRec
基于Pearson相似度的协同过滤算法 PCCCF
基于一种混合相似度的协同过滤算法 HyCF
本文算法 GMURec、GMIRec
The Proposed Algorithm and Baselines
Accuracy of the Algorithm and Baselines
Recall of the Algorithm and Baselines
Running Time of the Algorithm and Baselines
[1] 朱成纯, 张谧 . 基于活动的社交网络中的群组推荐算法设计[J]. 计算机系统应用, 2017,26(9):103-108.
[1] ( Zhu Chengchun, Zhang Mi . Predicting User Preferences for Groups in Event-Based Social Networks[J]. Computer Systems & Applications, 2017,26(9):103-108.)
[2] 李珊, 姚叶慧, 厉浩 , 等. 基于ISA联合聚类的组推荐算法研究[J]. 数据分析与知识发现, 2019,3(8):77-87.
[2] ( Li Shan, Yao Yehui, Li Hao , et al. ISA Biclustering Algorithm for Group Recommendation[J]. Data Analysis and Knowledge Discovery, 2019,3(8):77-87.)
[3] Sarwar B M, Karypis G, Konstan J , et al. Recommender Systems for Large-Scale E-Commerce: Scalable Neighborhood Formation Using Clustering[J]. Communications, 2002,50(12):158-167.
[4] Lu J, Shambour Q, Xu Y S , et al. A Web-Based Personalized Business Partner Recommendation System Using Fuzzy Semantic Techniques[J]. Computational Intelligence, 2013,29(1):37-69.
[5] Ortega F, Hernando A, Bobadilla J , et al. Recommending Items to Group of Users Using Matrix Factorization Based Collaborative Filtering[J]. Information Sciences, 2016,345(C):313-324.
[6] 黄国言, 李有超, 高建培 , 等. 基于项目属性的用户聚类协同过滤推荐算法[J]. 计算机工程与设计, 2010,31(5):1038-1041.
[6] ( Huang Guoyan, Li Youchao, Gao Jianpei , et al. Collaborative Filtering Recommendation Algorithm Based on User Clustering of Item Attributes[J]. Computer Engineering and Design, 2010,31(5):1038-1041.)
[7] 陈克寒, 韩盼盼, 吴健 . 基于用户聚类的异构社交网络推荐算法[J]. 计算机学报, 2013,36(2):349-359.
[7] ( Chen Kehan, Han Panpan, Wu Jian . User Clustering Based Social Network Recommendation[J]. Chinese Journal of Computers, 2013,36(2):349-359.)
[8] 王晓军 . 推荐系统中分布式混合协同过滤方法[J]. 北京邮电大学学报, 2016,39(2):25-29.
[8] ( Wang Xiaojun . A Distributed Hybrid Collaborative Filtering Method in Recommender Systems[J]. Journal of Beijing University of Posts and Telecommunications, 2016,39(2):25-29.)
[9] 黄贤英, 李沁东, 熊李媛 . 结合拓扑势用户聚类的协同过滤推荐算法[J]. 计算机工程与设计, 2018,39(1):90-95.
[9] ( Huang Xianying, Li Qindong, Xiong Liyuan . Collaborative Filtering Recommendation Algorithm with Topology Potential Combined User Clustering[J]. Computer Engineering and Design, 2018,39(1):90-95.)
[10] 王兴茂, 张兴明, 吴毅涛 , 等. 基于启发式聚类模型和类别相似度的协同过滤推荐算法[J]. 电子学报, 2016,44(7):1708-1713.
[10] ( Wang Xingmao, Zhang Xingming, Wu Yitao , et al. A Collaborative Recommendation Algorithm Based on Heuristic Clustering Model and Category Similarity[J]. Acta Electronica Sinica, 2016,44(7):1708-1713.)
[11] 张峻玮, 杨洲 . 一种基于改进的层次聚类的协同过滤用户推荐算法研究[J]. 计算机科学, 2014,41(12):176-178.
[11] ( Zhang Junwei, Yang Zhou . Collaborative Filtering Recommendation Algorithm Based on Improved User Clustering[J]. Computer Science, 2014,41(12):176-178.)
[12] 李华, 张宇, 孙俊华 . 基于用户模糊聚类的协同过滤推荐研究[J]. 计算机科学, 2012,39(12):83-86.
[12] ( Li Hua, Zhang Yu, Sun Junhua . Research on Collaborative Filtering Recommendation Based on User Fuzzy Clustering[J]. Computer Science, 2012,39(12):83-86.)
[13] 李贵, 陈召新, 李征宇 , 等. 基于谱聚类群组发现的协同过滤推荐算法[J]. 计算机科学, 2014,41(11A):354-358.
[13] ( Li Gui, Chen Zhaoxin, Li Zhengyu , et al. Collaborative Filtering Recommendation Algorithm Based on Spectral Clustering Subgroups Discovering[J]. Computer Science, 2014,41(11A):354-358.)
[14] Zheng N, Bao H. Flickr Group Recommendation Based on User-Generated Tags and Social Relations via Topic Model [C]//Proceedings of the 10th International Symposium on Neural Networks. Springer, 2013: 514-523.
[15] 陈婷, 朱青, 周梦溪 , 等. 社交网络环境下基于信任的推荐算法[J]. 软件学报, 2017,28(3):721-731.
[15] ( Chen Ting, Zhu Qing, Zhou Mengxi , et al. Trust-Based Recommendation Algorithm in Social Network[J]. Journal of Software, 2017,28(3):721-731.)
[16] Quijano-Sanchez L, Recio-Garcia J A, Diaz-Agudo B. Personality and Social Trust in Group Recommendations [C]//Proceedings of the 22nd IEEE International Conference on Tools with Artificial Intelligence. IEEE Computer Society, 2010: 121-126.
[17] Lai C H, Liu D R, Lin C S . Novel Personal and Group-Based Trust Models in Collaborative Filtering for Document Recommendation[J]. Information Sciences, 2013,239:31-49.
[18] Kagita V R, Pujari A K, Padmanabhan V . Virtual User Approach for Group Recommender Systems Using Precedence Relations[J]. Information Sciences, 2015,294:15-30.
[19] Ma Y K, Ji S J, Liang Y Q, et al. A Hybrid Recommendation List Aggregation Algorithm for Group Recommendation [C]//Proceedings of the 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). ACM, 2015: 405-408
[20] Chao D L, Balthrop J, Forrest S. Adaptive Radio: Achieving Consensus Using Negative Preferences [C]//Proceedings of 2005 International ACM SIGGROUP Conference on Supporting Group Work. ACM, 2005: 120-123.
[21] Masthoff J . Group Modeling: Selecting a Sequence of Television Items to Suit a Group of Viewers[J]. User Modeling and User-Adapted Interaction, 2004,14(1):37-85.
[22] Van Deventer O, De Wit J, Vanattenhoven J, et al. Group Recommendation in an Hybrid Broadcast Broadband Television Context [C]// Proceedings of the 21st Conference on User Modeling, Adaptation, and Personalization. 2013.
[23] McCarthy K, Salamó M, Coyle L, et al. CATS: A Synchronous Approach to Collaborative Group Recommendation [C]//Proceedings of the 19th International Florida Artificial Intelligence Research Society Conference. 2006: 86-91.
[24] Ntoutsi I, Stefanidis K, Norvag K, et al. gRecs: A Group Recommendation System Based on User Clustering [C]//Proceedings of the 17th International Conference on Database Systems for Advanced Applications. Springer-Verlag, 2012: 299-303.
[25] Quijano-Sanchez L Recio-Garcia J A Diaz-Agudo B . An Architecture and Functional Description to Integrate Social Behaviour Knowledge into Group Recommender Systems[J]. Applied Intelligence, 2014,40(4):732-748.
[26] McCarthy J F. Pocket RestraurantFinder a Situated Recommender System for Groups [C]//Proceedings of the Workshop on Mobile Ad-Hoc Communication at the 2002 ACM Conference on Human Factors in Computer Systems. 2002: 1-10.
[27] 刘荣荣 . 考虑时间情境的群体推荐算法研究[J]. 武汉理工大学学报(信息与管理工程版), 2016,38(1):93-96.
[27] ( Liu Rongrong . Group Recommendation Algorithm Research Considering Time Context[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2016,38(1):93-96.)
[28] 郭均鹏, 赵梦楠 . 面向在线社区用户的群体推荐算法研究[J]. 计算机应用研究, 2014,31(3):696-699.
[28] ( Guo Junpeng, Zhao Mengnan . Group Recommendation Algorithm for Online Community Users[J]. Application Research of Computers, 2014,31(3):696-699.)
[29] Roy S B, Lakshmanan L V S, Liu R , et al. From Group Recommendations to Group Formation [C]//Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. 2015: 1603-1616.
[30] 赵梦楠 . 基于SNA的群体推荐系统的研究[J]. 信息技术, 2000(2):199-202.
[30] ( Zhao Mengnan . Research on SNA-based Group Recommendation System[J]. Information Technology, 2000 ( 2):199-202.)
[31] 梁昌勇, 冷亚军, 王勇胜 , 等. 电子商务推荐系统中群体用户推荐问题研究[J]. 中国管理科学, 2013,21(3):153-158.
[31] ( Liang Changyong, Leng Yajun, Wang Yongsheng , et al. Research on Group User Recommendation in E-Commerce Recommendation System[J]. Chinese of Management Science, 2013,21(3):153-158.)
[32] Shang S, Hui P, Kulkarni S R, et al. Wisdom of the Crowd: Incorporating Social Influence in Recommendation Models [C]//Proceedings of the 17th International Conference on Parallel & Distributed Systems. IEEE, 2012: 835-840.
[33] 李汶华, 熊晓栋, 郭均鹏 . 一种基于案例推理和协商的群体推荐算法[J]. 系统工程, 2013,31(11):93-98.
[33] ( Li Wenhua, Xiong Xiaodong, Guo Junpeng . A Group Recommendation Algorithm Based on CBR and Negotiation[J]. Systems Engineering, 2013,31(11):93-98.)
[34] Sacharidis D. Top-N Group Recommendations with Fairness [C]//Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. 2019: 1663-1670.
[35] Stratigi M, Nummenmaa J, Pitoura E, et al. Fair Sequential Group Recommendations [C]//Proceedings of the 35th Annual ACM Symposium on Applied Computing. 2020: 1443-1452.
[36] Cao D, He X N, Miao L H, et al. Attentive Group Recommendation [C]//Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. 2018: 645-654.
[37] Zhu Q, Zhou M X, Liang J F, et al. Efficient Promotion Algorithm by Exploring Group Preference in Recommendation [C]//Proceedings of the 2016 IEEE International Conference on Web Services. IEEE, 2016: 268-275.
[38] Bilge A, Kaleli C. A Multi-Criteria Item-Based Collaborative Filtering Framework [C]//Proceedings of the 11th International Joint Conference on Computer Science and Software Engineering (JCSSE). 2014: 18-22.
[39] Adomavicius G, Kwon Y O . New Recommendation Techniques for Multicriteria Rating Systems[J]. IEEE Intelligent Systems, 2007,22(3):48-55.
[40] Nilashi M, Esfahani M D, Roudbaraki M Z , et al. A Multi-Criteria Collaborative Filtering Recommender System Using Clustering and Regression Techniques[J]. Journal of Soft Computing and Decision Support Systems, 2016,3(5):24-30.
[41] Majumder G S, Dwivedi P, Kant V. Matrix Factorization and Regression-Based Approach for Multi-Criteria Recommender System [C]//Proceedings of the International Conference on Information & Communication Technology for Intelligent Systems. 2017: 103-110.
[42] 陈冬林, 聂规划 . 基于商品属性隐性评分的协同过滤算法研究[J]. 计算机应用研究, 2006,26(4):966-968.
[42] ( Chen Donglin, Nie Guihua . Research on Collaborative Filtering Algorithm Based on Item’s Attribute Implicit Rating[J]. Journal of Computer Applications, 2006,26(4):966-968.)
[43] Zhang J, Peng Q K, Sun S Q , et al. Collaborative Filtering Recommendation Algorithm Based on User Preference Derived from Item Domain Features[J]. Physica A: Statistical Mechanics and Its Applications, 2014,396:66-76.
[44] Jannach D, Karakaya Z, Gedikli F. Accuracy Improvements for Multi-criteria Recommender Systems [C]//Proceedings of the 13th ACM Conference on Electronic Commerce. ACM, 2012: 674-689.
[45] Jannach D, Zanker M, Fuchs M . Leveraging Multi-criteria Customer Feedback for Satisfaction Analysis and Improved Recommendations[J]. Information Technology and Tourism, 2014,14(2):119-149.
[46] Zheng Y. Criteria Chains: A Novel Multi-Criteria Recommendation Approach [C]//Proceedings of the 22nd International Conference on Intelligent User Interfaces. ACM, 2017: 29-33.
[47] 覃正, 李岱峰 . 一种基于资源多属性分类的群组推荐模型[J]. 统计与决策, 2010 ( 8):153-155.
[47] ( Qin Zheng, Li Daifeng . A Group Recommendation Model Based on Multi-attribute Classification of Resources[J]. Statistics and Decision, 2010 ( 8):153-155.)
[48] Garcia I, Sebastia L, Onaindia E, et al. A Group Recommender System for Tourist Activities [C]//Proceedings of the 10th International Conference on E-Commerce and Web Technologies. 2009: 26-37.
[49] Geng L. Neuron Adaptive and Neural Network Based on Gradient Descent Searching Algorithm for Diagonalization of Relative Gain Sensitivity Matrix Decouple Control for MIMO System [C]//Proceedings of 2018 IEEE International Conference on Networking, Sensing and Control. IEEE, 2008: 368-373.
[50] Harrington P. 机器学习实战[M]. 李锐, 李鹏, 曲亚东, 等译. 北京: 人民邮电出版社, 2013: 15-31.
[50] ( Harrington P. Machine Learning in Action [M]. Translated by Li Rui, Li Peng, Qu Yadong, et al. Beijing: Posts and Telecom Press, 2013: 15-31.)
[51] 范永全, 杜亚军 . 基于加权相似度的用户协同过滤方法[J]. 计算机工程与应用, 2016,52(22):222-225.
[51] ( Fan Yongquan, Du Yajun . Improved User-based Collaborative Filtering Method Based on Weighted Similarity[J]. Computer Engineering and Applications, 2016,52(22):222-225.)
[52] Sai L N, Shreya M S, Subudhi A A , et al. Optimal K-Means Clustering Method Using Silhouette Coefficient[J]. International Journal of Applied Research on Information Technology and Computing, 2017,8(3):335-344.
[53] 袁正午, 陈然 . 基于多层次混合相似度的协同过滤推荐算法[J]. 计算机应用, 2018,38(3):633-638.
[53] ( Yuan Zhengwu, Chen Ran . Collaborative Filtering Recommendation Algorithm Based on Multi-Level Hybrid Similarity[J]. Journal of Computer Applications, 2018,38(3):633-638.)
[54] Chao C X, Qu S N, Du T . Research of Collaborative Filtering Recommendation Algorithm for Short Text[J]. Journal of Computer & Communications, 2014,2(14):59-66.
[55] 丁晟春, 王小英, 刘梦露 . 基于本体和加权朴素贝叶斯的网络舆情主题分类[J]. 现代情报, 2018,38(8):12-17, 34.
[55] ( Ding Shengchun, Wang Xiaoying, Liu J . Topic Classification of Network Public Opinion Based on Ontology and Weighted Naive Bayes [J]. Modern Information, 2018,38(8):12-17, 34.)
[56] Wang Y, Deng J Z, Gao J , et al. A Hybrid User Similarity Model for Collaborative Filtering[J]. Information Sciences, 2017,418(C):102-118.
[57] Tran L V, Pham T A N, Tay Y, et al. Interact and Decide: Medley of Sub-Attention Networks for Effective Group Recommendation [C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2019: 255-264.
[58] Delic A, Ricci F, Neidhardt J, et al. Preference Networks and Non-Linear Preferences in Group Recommendations [C]//Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence. 2019: 403-407.
[1] Chen Jie,Ma Jing,Li Xiaofeng. Short-Text Classification Method with Text Features from Pre-trained Models[J]. 数据分析与知识发现, 2021, 5(9): 21-30.
[2] Li Wenna,Zhang Zhixiong. Research on Knowledge Base Error Detection Method Based on Confidence Learning[J]. 数据分析与知识发现, 2021, 5(9): 1-9.
[3] Sun Yu, Qiu Jiangnan. Research on Influence of Opinion Leaders Based on Network Analysis and Text Mining [J]. 数据分析与知识发现, 0, (): 1-.
[4] Wang Qinjie, Qin Chunxiu, Ma Xubu, Liu Huailiang, Xu Cunzhen. Recommending Scientific Literature Based on Author Preference and Heterogeneous Information Network[J]. 数据分析与知识发现, 2021, 5(8): 54-64.
[5] Li Wenna, Zhang Zhixiong. Entity Alignment Method for Different Knowledge Repositories with Joint Semantic Representation[J]. 数据分析与知识发现, 2021, 5(7): 1-9.
[6] Wang Hao, Lin Kerou, Meng Zhen, Li Xinlei. Identifying Multi-Type Entities in Legal Judgments with Text Representation and Feature Generation[J]. 数据分析与知识发现, 2021, 5(7): 10-25.
[7] Yang Hanxun, Zhou Dequn, Ma Jing, Luo Yongcong. Detecting Rumors with Uncertain Loss and Task-level Attention Mechanism[J]. 数据分析与知识发现, 2021, 5(7): 101-110.
[8] Xu Yuemei, Wang Zihou, Wu Zixin. Predicting Stock Trends with CNN-BiLSTM Based Multi-Feature Integration Model[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[9] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[10] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[11] Ruan Xiaoyun,Liao Jianbin,Li Xiang,Yang Yang,Li Daifeng. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[12] Liu Tong,Liu Chen,Ni Weijian. A Semi-Supervised Sentiment Analysis Method for Chinese Based on Multi-Level Data Augmentation[J]. 数据分析与知识发现, 2021, 5(5): 51-58.
[13] Chen Wenjie,Wen Yi,Yang Ning. Fuzzy Overlapping Community Detection Algorithm Based on Node Vector Representation[J]. 数据分析与知识发现, 2021, 5(5): 41-50.
[14] Zhang Guobiao,Li Jie. Detecting Social Media Fake News with Semantic Consistency Between Multi-model Contents[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
[15] Yan Qiang,Zhang Xiaoyan,Zhou Simin. Extracting Keywords Based on Sememe Similarity[J]. 数据分析与知识发现, 2021, 5(4): 80-89.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938