Please wait a minute...
Data Analysis and Knowledge Discovery  2021, Vol. 5 Issue (12): 74-87    DOI: 10.11925/infotech.2096-3467.2021.0402
Current Issue | Archive | Adv Search |
Two-layer Transmission Model of WeChat Public Account with Bass Model and SIR Model
Yang Siluo(),Xiao Aoxia
School of Information Management, Wuhan University, Wuhan 430072, China
Research Center for Chinese Science Evaluation (RCCSE), Wuhan University, Wuhan 430072, China
Download: PDF (2265 KB)   HTML ( 9
Export: BibTeX | EndNote (RIS)      

[Objective] This paper constructs a double-layer transmission model for the content transmission of WeChat public accounts with the help of Bass model. [Methods] First, we analyzed the transmission process of the WeChat official account articles. Then, we developed a two-layer model combining the Bass diffusion model and the SIR model. Third, we conducted KS test using data from the public account of “Library and Information Conference”. Finally, we analyzed the parameters and the initial conditions of the model with Python. [Results] The new model simulated the transmission process of the public account contents. The probability of readers no longer sharing, as well as the non-subscribers’ exposure to information from other's sharing, have greater impacts on the dissemination of contents. [Limitations] This model did not include the complex network model for further analysis and did not study articles accessed by more than 100,000 times. [Conclusions] The proposed model could help us monitor the dissemination of WeChat public account contents and manage online opinion.

Key wordsWeChat Public Account      Transmission Model      Bath Diffusion Model      SIR Model     
Received: 25 April 2021      Published: 20 January 2022
ZTFLH:  G206  
Fund:National Social Science Found of China(18BTQ079)
Corresponding Authors: Yang Siluo,ORCID:0000-0003-3228-1102     E-mail:

Cite this article:

Yang Siluo, Xiao Aoxia. Two-layer Transmission Model of WeChat Public Account with Bass Model and SIR Model. Data Analysis and Knowledge Discovery, 2021, 5(12): 74-87.

URL:     OR

The SIR Model
WeChat Public Account Content Transmission Chain
Individual State Division in the Model
Two-layer Transmission Model of WeChat Public Account Combined with Bass Model and SIR Model
日期 公众号渠道阅读人数 非公众号渠道阅读人数 分享
2019年12月20日 313 583 93 803
2019年12月21日 29 161 18 172
2019年12月22日 17 67 9 75
2019年12月23日 10 29 5 34
2019年12月24日 1 14 2 13
2019年12月25日 5 21 6 20
2019年12月26日 3 15 3 15
Transmission Data Within 7 Days After the Article was Issued
p q β γ
0.25 0.35 0.65 0.45
Best Fit Parameters
Simulation Changes in Article Spread Based on Best-fitting Parameters
Variation of Article Diffusion Velocity Based on Best-fitting Parameters
Comparison of Simulated Situation with Actual Data
p on the Transmission Process
The Influence of Different Innovation Coefficient p on the Transmission Process
q on the Transmission Process
The Influence of Different Imitation Coefficient q on the Transmission Process
β on the Transmission Process
The Influence of Different Sharing Coefficient β on the Transmission Process
γ on the Transmission Process
The Influence of Different Immunity Coefficient γ on the Transmission Process
F 0 and N F 0) on the Transmission Process
When the Parameter is Fixed, the Influence of Different Initial Conditions (the Proportion of F 0 and N F 0) on the Transmission Process
[1] 周东浩, 韩文报, 王勇军. 基于节点和信息特征的社会网络信息传播模型[J]. 计算机研究与发展, 2015, 52(1): 156-166.
[1] (Zhou Donghao, Han Wenbao, Wang Yongjun. A Fine-Grained Information Diffusion Model Based on Node Attributes and Content Features[J]. Journal of Computer Research and Development, 2015, 52(1): 156-166.)
[2] QuestMobile研究院. QuestMobile微信公号人群洞察报告[EB/OL]. (2019-04-02) [2021-05-30].
[2] (QuestMobile. An Insight Report of WeChat Official Account Crowd[EB/OL]. (2019-04-02) [2021-05-30].
[3] 刘颖, 张焕. 基于社会网络理论的微信用户关系实证分析[J]. 情报资料工作, 2014, 35(4): 56-61.
[3] (Liu Ying, Zhang Huan. Empirical Analysis of WeChat Customer Relationship Based on Social Network Theory[J]. Information and Documentation Services, 2014, 35(4): 56-61.)
[4] 新华网. 自媒体段子不能打新闻擦边球[EB/OL]. (2020-07-29) [2021-05-30].
[4] (Xinhuanet. Self-media Jokes can’t be Edge Balls on News[EB/OL]. (2020-07-29) [2021-05-30].
[5] 人民网. 浙大新规: 优秀网络文化成果最高可认定国内权威学术期刊刊发[EB/OL]. (2017-09-16) [2021-12-11].
[5] (People’s Daily Online. New Regulations of Zhejiang University: Outstanding Network Cultural Achievements can be Recognized as the Highest Domestic Authoritative Academic Journal Publication[EB/OL]. (2017-09-16) [2021-12-11].
[6] 南京大学现代工程与应用科学学院. 现代工程与应用科学学院研究生奖学金评定办法[EB/OL]. (2020-09-03) [2021-05-30].
[6] (College of Engineering and Applied Sciences,Nanjing University. Graduate Scholarship Evaluation Method of College of Engineering and Applied Sciences[EB/OL]. 2020-09-03) [2021-05-30].
[7] 李合莉. 多层在线社交网络信息传播模型研究[D]. 济南: 山东财经大学, 2013: 19.
[7] (Li Heli. The Research of Information Dissemination Model Based on Multi-Hierarchical Social Networking Service[D]. Ji’nan: Shandong University of Finance and Economics, 2013: 19.)
[8] 吴中堂, 刘建徽, 唐振华. 微信公众号信息传播的影响因素研究[J]. 情报杂志, 2015, 34(4): 122-126.
[8] (Wu Zhongtang, Liu Jianhui, Tang Zhenhua. On Influential Factors of Wechat Official Account Information Transmission[J]. Journal of Intelligence, 2015, 34(4): 122-126.)
[9] 池生云, 邱倩. 要“吸睛”更要“走心”:信息传播价值的回归——以微信公众订阅号“三明电视台”为例[J]. 东南传播, 2015(7): 107-109.
[9] (Chi Shengyun, Qiu Qian. To “Attract the Eyes” but also to “Take the Heart”: The Return of the Value of Information Dissemination-Take the WeChat Official Account “Sanming TV Station” as an Example[J]. Southeast Communication, 2015(7): 107-109.)
[10] 彭晨明, 张莎, 赵红. 如何让你的微信帖子更受欢迎?——基于知名品牌微信运营数据的实证研究[J]. 管理评论, 2016, 28(12): 176-186.
[10] (Peng Chenming, Zhang Sha, Zhao Hong. How to Make Your We Chat Brand Posts Popular?——Empirical Evidence from Well-known Brands[J]. Management Review, 2016, 28(12): 176-186.)
[11] 相甍甍, 王晰巍, 郭顺利. 高校图书馆微信公众号信息传播效果的影响因素分析[J]. 现代情报, 2018, 38(3): 37-44.
[11] (Xiang Mengmeng, Wang Xiwei, Guo Shunli. Analysis of the Influence Factors of WeChat Public Information Dissemination Effect in University Library[J]. Journal of Modern Information, 2018, 38(3): 37-44.)
[12] 纪慧生, 蔡东妮. 微信公众号信息传播影响因素分析[J]. 集美大学学报(哲学社会科学版), 2016, 19(4): 107-115.
[12] (Ji Huisheng, Cai Dongni. Analysis of the Factors for Information Transmission of WeChat Public Accounts[J]. Journal of Jimei University(Philosophy and Social Sciences), 2016, 19(4): 107-115.)
[13] 马全恩, 张娟. 复杂网络上基于SIR模型的微信公众号传播机制研究[J]. 情报科学, 2018, 36(7): 30-35.
[13] (Ma Quanen, Zhang Juan. Research on Propagation Principle of WeChat Official Account in Complex Network by Modeling Based on SIR and Simulation[J]. Information Science, 2018, 36(7): 30-35.)
[14] 魏静, 黄阳江豪, 朱恒民, 等. 基于双层微信网络的舆情传播模型研究[J]. 统计与决策, 2019, 35(1): 38-42.
[14] (Wei Jing, Huang Yangjianghao, Zhu Hengmin, et al. Research on Public Opinion Transmission Model Based on Double Layer WeChat Network[J]. Statistics & Decision, 2019, 35(1): 38-42.)
[15] 熊茵, 江山, 邢若南. 微信舆情的传播特征、机制及引导构想[J]. 情报科学, 2018, 36(11): 54-60.
[15] (Xiong Yin, Jiang Shan, Xing Ruonan. Mechanism of Transmission and Guidance of WeChat Public Opinion[J]. Information Science, 2018, 36(11): 54-60.)
[16] 覃志华, 刘咏梅. 基于三层微信网络的谣言传播模型仿真研究[J]. 情报科学, 2017, 35(5): 119-124.
[16] (Qin Zhihua, Liu Yongmei. Simulation Investigation of Rumor Spreading Model Base on Three-layer WeChat Network[J]. Information Science, 2017, 35(5): 119-124.)
[17] Kermack W O, Mckendrick A G. A Contribution to the Mathematical Theory of Epidemics[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1927, 115(772): 700-721.
doi: 10.1098/rspa.1927.0118
[18] Kermack W O, McKendrick AG. Contributions to the Mathematical Theory of Epidemics.Ⅱ.-The Problem of Endemicity[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1932, 138(834): 55-83.
doi: 10.1098/rspa.1932.0171
[19] Kermack W O, McKendrick A G. Contributions to the Mathematical Theory of Epidemics.Ⅲ.-Further Studies of the Problem of Endemicity[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1933, 141(843): 94-122.
doi: 10.1098/rspa.1933.0106
[20] Daley D J, Kendall D G. Epidemics and Rumours[J]. Nature, 1964, 204(4963): 1118.
doi: 10.1038/2041118a0
[21] Daley D J, Kendall D G. Stochastic Rumours[J]. IMA Journal of Applied Mathematics, 1965, 1(1): 42-55.
doi: 10.1093/imamat/1.1.42
[22] Maki D P, Thompson M. Mathematical Models and Applications[M]. Springer, 2015.
[23] Leskovec J, McGlohon M, Faloutsos C, et al. Patterns of Cascading Behavior in Large Blog Graphs [C]//Proceedings of the 2007 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. 2007: 551-556.
[24] 卢东, 郭进利, 何红英. 基于S1S2IR双S模型在微信谣言传播中的研究[J]. 数学的实践与认识, 2017, 47(16): 157-163.
[24] (Lu Dong, Guo Jinli, He Hongying. Research on WeChat Rumor Spreading Based on S1S2IR Double S Model[J]. Mathematics in Practice and Theory, 2017, 47(16): 157-163.)
[25] Bass F M. A New Product Growth for Model Consumer Durables[J]. Management Science, 2004, 50(12): 1825-1832.
doi: 10.1287/mnsc.1040.0264
[26] The Bass Diffusion Model[EB/OL].[2020-07-04].
[27] 孙静, 汤书昆. 新媒体环境下“微信”科学传播模式探析[J]. 科普研究, 2016, 11(5): 10-16, 97.
[27] (Sun Jing, Tang Shukun. An Analysis of Science Communication Model with “WeChat” Under the Context of New Media[J]. Studies on Science Popularization, 2016, 11(5): 10-16, 97.)
[1] Li Bangqun. Situation of Library Report Service by WeChat[J]. 现代图书情报技术, 2014, 30(12): 85-91.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938