Please wait a minute...
Data Analysis and Knowledge Discovery  2023, Vol. 7 Issue (2): 15-25    DOI: 10.11925/infotech.2096-3467.2022.1027
Current Issue | Archive | Adv Search |
Knowledge Graph Completion Model Based on Entity and Relation Fusion
Zhang Zhengang,Yu Chuanming()
School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
Download: PDF (883 KB)   HTML ( 26
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This study aggregates the global information of knowledge graph through a weighted graph convolutional neural network and a relational induction mechanism, aiming to enhance the quality of the knowledge graph representation and completion. [Methods] We proposed an end-to-end learning model for the knowledge graph completion task, which included a neighborhood information aggregation module, an entity relationship fusion module, an interaction module, as well as a prediction module. This new model aggregates the neighborhood information of entities to enrich their representations. It also enhances the interaction between entities and relationship representations with a core tensor. [Results] We examined the new model with the FB15K237, WN18RR, Kinship, and UMLS datasets. Compared with traditional knowledge graph completion models, the Hits@1 indicators of the proposed model increased by 4.1%, 3.9%, 17.8%, and 5.3% on the four datasets, respectively. [Limitations] We did not explore the performance of our new model on information retrieval and recommendation systems. [Conclusions] The proposed model significantly improves the effectiveness of the knowledge graph completion, which helps us identify missing information in knowledge graphs and may benefit information retrieval and automatic Q&A applications.

Key wordsKnowledge Graph      Knowledge Graph Completion      Deep Learning      Graph Convolutional Networks     
Received: 28 September 2022      Published: 28 March 2023
ZTFLH:  G353  
Fund:National Natural Science Foundation of China(71974202);Fundamental Research Funds for the Central Universities(202311401)
Corresponding Authors: Yu Chuanming,ORCID:0000-0001-7099-0853,E-mail:yucm@zuel.edu.cn。   

Cite this article:

Zhang Zhengang, Yu Chuanming. Knowledge Graph Completion Model Based on Entity and Relation Fusion. Data Analysis and Knowledge Discovery, 2023, 7(2): 15-25.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2022.1027     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2023/V7/I2/15

The Architecture of the ERF-KGC Model
数据集 实体数量 关系数量 训练集 验证集 测试集
FB15K237 14 541 237 272 115 17 535 20 466
WN18RR 40 943 11 86 835 3 034 3 134
Kinship 104 25 8 544 1 068 1 074
UMLS 135 46 5 216 652 661
Statistical Descriptions of Four Datasets
模型 FB15K237 WN18RR
MRR/% Hits@1/% Hits@3/% Hits@10/% MRR/% Hits@1/% Hits@3/% Hits@10/%
TransE 28.6 19.0 32.6 47.3 22.1 4.6 35.4 50.4
TransH 29.2 19.1 33.3 49.3 22.6 4.9 36.8 50.3
TransR 31.5 21.6 35.4 51.0 23.5 4.7 39.8 50.7
TransD 28.4 18.1 32.5 48.7 21.9 3.8 36.7 50.8
DistMult 24.1 15.5 26.3 41.9 43.0 39.0 44.0 49.0
ComplEx 24.7 15.8 27.5 42.8 44.0 41.0 46.0 51.0
TuckER 35.8 26.6 39.4 54.4 47.0 44.3 48.2 52.6
ConvE 31.2 22.5 34.1 49.7 43.0 40.0 44.0 52.0
ConvR 35.0 26.1 38.5 52.8 47.5 44.3 48.9 53.7
HypER 34.1 25.2 37.6 52.0 46.5 43.6 47.7 52.2
AcrE 35.8 26.6 39.3 54.5 45.9 42.2 47.3 53.2
R-GCN 16.4 10.0 18.1 30.0 12.3 8.0 13.7 20.7
SACN 35.0 26.0 39.0 54.0 47.0 43.0 48.0 54.0
CompGCN 35.5 26.4 39.0 53.5 47.9 44.3 49.4 54.6
ComplexGCN 33.8 24.5 37.1 52.4 45.5 42.3 46.8 51.6
ERF-KGC 37.2 30.7 42.8 55.7 49.5 48.2 54.0 63.2
Results of ERF-KGC Model and Baseline Models on the FB15K237 and WN18RR Datasets
模型 Kinship UMLS
MRR/% Hits@1/% Hits@3/% Hits@10/% MRR/% Hits@1/% Hits@3/% Hits@10/%
TransE 30.9 9.0 64.3 84.1 98.9
DistMult 51.6 36.7 58.1 86.7 84.6
ComplEx 82.3 73.3 89.9 97.1 96.7
ConvE 83.3 73.8 91.7 98.1 94.0 92.0 96.0 99.0
R-GCN 10.9 3.0 8.8 23.9
ERF-KGC 88.5 91.6 96.5 98.6 93.0 97.3 98.9 99.6
Results of ERF-KGC Model and Baseline Models on the Kinship and UMLS Datasets
模型 MRR/% Hits@1/% Hits@3/% Hits@10/%
ERF-KGC 37.2 30.7 42.8 55.7
w/o 对比学习损失 37.1 (-0.1) 29.2 (-1.5) 40.1 (-2.7) 54.4 (-1.3)
w/o 实体关系融合 36.3 (-0.9) 27.2 (-3.5) 39.8 (-3.0) 54.7 (-1.0)
w/o 邻居信息聚合 35.2 (-2.0) 25.9 (-4.8) 39.0 (-3.8) 53.8 (-1.9)
Ablation Experimental Results of ERF-KGC Model on the FB15K237 Dataset
模型 MRR/% Hits@1/% Hits@3/% Hits@10/%
ERF-KGC 49.5 48.2 54.0 63.2
w/o 对比学习损失 48.0 (-1.5) 47.9 (-0.3) 53.0 (-1.0) 62.0 (-1.2)
w/o 实体关系融合 47.5 (-2.0) 43.2 (-5.0) 50.2 (-3.8) 59.2 (-4.0)
w/o 邻居信息聚合 47.0 (-2.5) 42.3 (-5.9) 48.2 (-5.8) 55.6 (-7.6)
Ablation Experimental Results of ERF-KGC Model on the WN18RR Dataset
[1] 马费成, 周利琴. 面向智慧健康的知识管理与服务[J]. 中国图书馆学报, 2018, 44(5): 4-19.
[1] (Ma Feicheng, Zhou Liqin. Knowledge Management and Services for Smart Health[J]. Journal of Library Science in China, 2018, 44(5): 4-19.)
[2] 孙坦, 刘峥, 崔运鹏, 等. 融合知识组织与认知计算的新一代开放知识服务架构探析[J]. 中国图书馆学报, 2019, 45(3): 38-48.
[2] (Sun Tan, Liu Zheng, Cui Yunpeng, et al. Analysis and Design of a New Generation of Open Knowledge Service System Integrating Knowledge Organization and Cognitive Computing[J]. Journal of Library Science in China, 2019, 45(3): 38-48.)
[3] 翟兴, 王涛, 韩芳芳. 基于知识图谱的健康养生智能知识服务系统架构设计[J]. 信息资源管理学报, 2020, 10(3): 36-48.
doi: 10.4018/IRMJ
[3] (Zhai Xing, Wang Tao, Han Fangfang. Research on Architecture Design and Key Technologies of Health Care Intelligent Knowledge Service System Based on Knowledge Graph[J]. Journal of Information Resources Management, 2020, 10(3): 36-48.)
doi: 10.4018/IRMJ
[4] 孙建军. 链接分析:知识基础、研究主体、研究热点与前沿综述——基于科学知识图谱的途径[J]. 情报学报, 2014, 33(6): 659-672.
[4] (Sun Jianjun. Link Analysis: Knowledge Base, Research Agents, Research Focus and Frontier Review Based on Knowledge Mapping[J]. Journal of the China Society for Scientific and Technical Information, 2014, 33(6): 659-672.)
[5] 谭晓, 李辉, 许海云. 基于多维数据知识内容和关联深层融合的知识发现研究综述[J]. 科技情报研究, 2021, 3(4): 58-68.
[5] (Tan Xiao, Li Hui, Xu Haiyun. Research on Knowledge Discovery Based on Deep Integration of Multidimensional Data Knowledge Content and Relevance in Big Data Environment[J]. Scientific Information Research, 2021, 3(4): 58-68.)
[6] 吕红. 基于知识图谱的信息政策与法规研究主题可视化分析[J]. 科技情报研究, 2021, 3(4): 45-57.
[6] (Lv Hong. Visualization Analysis on the Research Topics of Information Policy and Regulation Based on Mapping Knowledge Domain[J]. Scientific Information Research, 2021, 3(4): 45-57.)
[7] 洪亮, 宋睿, 朱丽雅, 等. 知识关联视角下的文化遗产知识大图研究:理论、方法和趋势[J]. 图书情报知识, 2022, 39(2): 133-143.
[7] (Hong Liang, Song Rui, Zhu Liya, et al. Study on Big Knowledge Graph of Cultural Heritage Based on the Perspective of Knowledge Association: Theories, Methods and Trends[J]. Documentation, Information & Knowledge, 2022, 39(2): 133-143.)
[8] 李广建, 罗立群. 走向知识融合——大数据环境下情报学的发展趋势[J]. 中国图书馆学报, 2020, 46(6): 26-40.
[8] (Li Guangjian, Luo Liqun. Towards Knowledge Fusion: The Development Trend of Information Science in Big Data Environment[J]. Journal of Library Science in China, 2020, 46(6): 26-40.)
[9] 余传明, 王峰, 安璐. 基于深度学习的领域知识对齐模型研究:知识图谱视角[J]. 情报学报, 2019, 38(6): 641-654.
[9] (Yu Chuanming, Wang Feng, An Lu. Research on the Domain Knowledge Alignment Model Based on Deep Learning: The Knowledge Graph Perspective[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(6): 641-654.)
[10] 陈璟浩, 曾桢, 李纲. 基于知识图谱的“一带一路”投资问答系统构建[J]. 图书情报工作, 2020, 64(12): 95-105.
doi: 10.13266/j.issn.0252-3116.2020.12.011
[10] (Chen Jinghao, Zeng Zhen, Li Gang. A Question Answering System for “the Belt and Road” Investment Based on Knowledge Graph[J]. Library and Information Service, 2020, 64(12): 95-105.)
doi: 10.13266/j.issn.0252-3116.2020.12.011
[11] 李贺, 刘嘉宇, 李世钰, 等. 基于疾病知识图谱的自动问答系统优化研究[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
[11] (Li He, Liu Jiayu, Li Shiyu, et al. Optimizing Automatic Question Answering System Based on Disease Knowledge Graph[J]. Data Analysis and Knowledge Discovery, 2021, 5(5): 115-126.)
[12] 余传明, 王峰, 张贞港, 等. 基于表示学习的知识库问答模型研究[J]. 科技情报研究, 2021, 3(1): 56-70.
[12] (Yu Chuanming, Wang Feng, Zhang Zhengang, et al. Research on Knowledge Graph Question Answering Model Based on Representation Learning[J]. Scientific Information Research, 2021, 3(1): 56-70.)
[13] 刘欢, 刘浏, 王东波. 数字人文视角下的领域知识图谱自动问答研究[J]. 科技情报研究, 2022, 4(1): 46-59.
[13] (Liu Huan, Liu Liu, Wang Dongbo. Research on Automatic Question Answering of Domain Knowledge Graph from the Perspective of Digital Humanities[J]. Scientific Information Research, 2022, 4(1): 46-59.)
[14] 李纲, 王施运, 毛进, 等. 面向态势感知的国家安全事件图谱构建研究[J]. 情报学报, 2021, 40(11): 1164-1175.
[14] (Li Gang, Wang Shiyun, Mao Jin, et al. Construction of National Security Event Map and Its Application for Situation Awareness[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(11): 1164-1175.)
[15] 刘政昊, 曾曦, 张志剑. 面向应急管理的金融突发事件事理知识图谱构建与分析研究[J]. 信息资源管理学报, 2022, 12(3): 137-151.
[15] (Liu Zhenghao, Zeng Xi, Zhang Zhijian. Research on Construction and Analysis of Financial Emergencies Knowledge Graph with Event Logical for Emergency Management[J]. Journal of Information Resources Management, 2022, 12(3): 137-151.)
[16] 刘勘, 徐勤亚, 於陆. 面向营商环境的知识图谱构建研究[J]. 数据分析与知识发现, 2022, 6(4): 82-96.
[16] (Liu Kan, Xu Qinya, Yu Lu. Constructing Knowledge Graph for Business Environment[J]. Data Analysis and Knowledge Discovery, 2022, 6(4): 82-96.)
[17] 欧阳剑, 梁珠芳, 任树怀. 大规模中国历代存世典籍知识图谱构建研究[J]. 图书情报工作, 2021, 65(5): 126-135.
doi: 10.13266/j.issn.0252-3116.2021.05.013
[17] (Ouyang Jian, Liang Zhufang, Ren Shuhuai. Research on the Construction of Knowledge Graph of Large-scale Chinese Ancient Books[J]. Library and Information Service, 2021, 65(5): 126-135.)
doi: 10.13266/j.issn.0252-3116.2021.05.013
[18] Bizer C, Lehmann J, Kobilarov G, et al. DBpedia-A Crystallization Point for the Web of Data[J]. Journal of Web Semantics, 2009, 7(3): 154-165.
doi: 10.1016/j.websem.2009.07.002
[19] Bollacker K, Cook R, Tufts P. Freebase: A Shared Database of Structured General Human Knowledge[C]// Proceedings of the 22nd National Conference on Artificial Intelligence-Volume 2. 2007: 1962-1963.
[20] Miller G A. WordNet: Alexical Database for English[J]. Communications of the ACM, 1995, 38(11): 39-41.
[21] Suchanek F M, Kasneci G, Weikum G. YAGO: A Large Ontology from Wikipedia and Wordnet[J]. Journal of Web Semantics, 2008, 6(3): 203-217.
doi: 10.1016/j.websem.2008.06.001
[22] 余传明, 张贞港, 孔令格. 面向链接预测的知识图谱表示模型对比研究[J]. 数据分析与知识发现, 2021, 5(11): 29-44.
[22] (Yu Chuanming, Zhang Zhengang, Kong Lingge. Comparing Knowledge Graph Representation Models for Link Prediction[J]. Data Analysis and Knowledge Discovery, 2021, 5(11): 29-44.)
[23] Bordes A, Usunier N, Garcia-Durán A, et al. Translating Embeddings for Modeling Multi-relational Data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems- Volume 2. 2013: 2787-2795.
[24] Wang Z, Zhang J W, Feng J L, et al. Knowledge Graph Embedding by Translating on Hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. 2014: 1112-1119.
[25] Lin Y K, Liu Z Y, Sun M S, et al. Learning Entity and Relation Embeddings for Knowledge Graph Completion[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. 2015: 2181-2187.
[26] Ji G L, He S Z, Xu L H, et al. Knowledge Graph Embedding via Dynamic Mapping Matrix[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1:Long Papers). 2015: 687-696.
[27] Nayyeri M, Cil G M, Vahdati S, et al. Trans4E: Link Prediction on Scholarly Knowledge Graphs[J]. Neurocomputing, 2021, 461: 530-542.
doi: 10.1016/j.neucom.2021.02.100
[28] Nickel M, Tresp V, Kriegel H P. A Three-Way Model for Collective Learning on Multi-Relational Data[C]// Proceedings of the 28th International Conference on Machine Learning. 2011: 809-816.
[29] Yang B S, Yih W T, He X D, et al. Embedding Entities and Relations for Learning and Inference in Knowledge Bases[OL]. arXiv Preprint, arXiv: 1412.6575.
[30] Trouillon T, Welbl J, Riedel S, et al. Complex Embeddings for Simple Link Prediction[C]// Proceedings of the 33rd International Conference on Machine Learning. 2016: 2071-2080.
[31] Sun Z Q, Deng Z H, Nie J Y, et al. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space[OL]. arXiv Preprint, arXiv: 1902.10197.
[32] Balažević I, Allen C, Hospedales T M. TuckER: Tensor Factorization for Knowledge Graph Completion[OL]. arXiv Preprint, arXiv:1901.09590.
[33] Dettmers T, Minervini P, Stenetorp P, et al. Convolutional 2D Knowledge Graph Embeddings[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018: 1811-1818.
[34] Nguyen D Q, Nguyen T D, Nguyen D Q, et al. A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 2 (Short Papers). 2018: 327-333.
[35] Jiang X T, Wang Q, Wang B. Adaptive Convolution for Multi-Relational Learning[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1 (Long and Short Papers). 2019: 978-987.
[36] Balažević I, Allen C, Hospedales T M. Hypernetwork Knowledge Graph Embeddings[C]// Proceedings of International Conference on Artificial Neural Networks. 2019: 553-565.
[37] Ren F L, Li J C, Zhang H H, et al. Knowledge Graph Embedding with Atrous Convolution and Residual Learning[C]// Proceedings of the 28th International Conference on Computational Linguistics. 2020: 1532-1543.
[38] Yu C M, Zhang Z G, An L, et al. A Knowledge Graph Completion Model Integrating Entity Description and Network Structure[J]. Aslib Journal of Information Management. DOI: 10.1108/AJIM-01-2022-0031.
doi: 10.1108/AJIM-01-2022-0031
[39] Schlichtkrull M, Kipf T N, Bloem P, et al. Modeling Relational Data with Graph Convolutional Networks[C]// Proceedings of European Semantic Web Conference. 2018: 593-607.
[40] Shang C, Tang Y, Huang J, et al. End-to-End Structure-Aware Convolutional Networks for Knowledge Base Completion[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2019: 3060-3067.
[41] Zeb A, Saif S, Chen J, et al. Complex Graph Convolutional Network for Link Prediction in Knowledge Graphs[J]. Expert Systems with Applications, 2022, 200: 116796.
doi: 10.1016/j.eswa.2022.116796
[42] Vashishth S, Sanyal S, Nitin V, et al. Composition-Based Multi-Relational Graph Convolutional Networks[OL]. arXiv Preprint, arXiv: 1911.03082.
[43] Wu Y T, Liu X, Feng Y S, et al. Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019: 5278-5284.
[44] Liu S T, Chen L W, Dong H Z, et al. Higher-Order Weighted Graph Convolutional Networks[OL]. arXiv Preprint, arXiv:1911.04129.
[45] Zhu R B, Ma M, Wang P. RAGA: Relation-Aware Graph Attention Networks for Global Entity Alignment[C]// Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2021: 501-513.
[46] Gao T Y, Yao X C, Chen D Q. SimCSE: Simple Contrastive Learning of Sentence Embeddings[OL]. arXiv Preprint, arXiv:2104.08821.
[47] Hafidi H, Ghogho M, Ciblat P, et al. Negative Sampling Strategies for Contrastive Self-supervised Learning of Graph Representations[J]. Signal Processing, 2022, 190: 108310.
doi: 10.1016/j.sigpro.2021.108310
[48] Kok S, Domingos P. Statistical Predicate Invention[C]// Proceedings of the 24th International Conference on Machine Learning. 2007: 433-440.
[49] Lin X V, Socher R, Xiong C M. Multi-hop Knowledge Graph Reasoning with Reward Shaping[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018:1-12.
[50] Akrami F, Saeef M S, Zhang Q H, et al. Realistic Re-evaluation of Knowledge Graph Completion Methods: An Experimental Study[C]// Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 2020: 1995-2010.
[51] Hu S, Zou L, Yu J X, et al. Answering Natural Language Questions by Subgraph Matching over Knowledge Graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(5): 824-837.
doi: 10.1109/TKDE.2017.2766634
[52] Xiong H B, Wang S T, Tang M R, et al. Knowledge Graph Question Answering with Semantic Oriented Fusion Model[J]. Knowledge-Based Systems, 2021, 221: 106954.
doi: 10.1016/j.knosys.2021.106954
[53] Guo X B, Lin W F, Li Y R, et al. DKEN: Deep Knowledge-Enhanced Network for Recommender Systems[J]. Information Sciences, 2020, 540: 263-277.
doi: 10.1016/j.ins.2020.06.041
[54] Chen J Y, Yu J, Lu W J, et al. IR-Rec: An Interpretive Rules-Guided Recommendation over Knowledge Graph[J]. Information Sciences, 2021, 563: 326-341.
doi: 10.1016/j.ins.2021.03.004
[1] Du Yue, Chang Zhijun, Dong Mei, Qian Li, Wang Ying. Constructing Large-scale Knowledge Graph for Massive Sci-Tech Literature[J]. 数据分析与知识发现, 2023, 7(2): 141-150.
[2] Shen Lining, Yang Jiayi, Pei Jiaxuan, Cao Guang, Chen Gongzheng. A Fine-Grained Sentiment Recognition Method Based on OCC Model and Triggering Events[J]. 数据分析与知识发现, 2023, 7(2): 72-85.
[3] Wang Weijun, Ning Zhiyuan, Du Yi, Zhou Yuanchun. Identifying Interdisciplinary Sci-Tech Literature Based on Multi-Label Classification[J]. 数据分析与知识发现, 2023, 7(1): 102-112.
[4] Peng Cheng, Zhang Chunxia, Zhang Xin, Guo Jingtao, Niu Zhendong. Reasoning Model for Temporal Knowledge Graph Based on Entity Multiple Unit Coding[J]. 数据分析与知识发现, 2023, 7(1): 138-149.
[5] Xiao Yuhan, Lin Huiping. Mining Differentiated Demands with Aspect Word Extraction: Case Study of Smartphone Reviews[J]. 数据分析与知识发现, 2023, 7(1): 63-75.
[6] Cheng Quan, She Dexin. Drug Recommendation Based on Graph Neural Network with Patient Signs and Medication Data[J]. 数据分析与知识发现, 2022, 6(9): 113-124.
[7] Liu Chunjiang, Li Shuying, Hu Hanlin, Fang Shu. Graph Databases for Complex Network Analysis[J]. 数据分析与知识发现, 2022, 6(7): 1-11.
[8] Zhang Han, An Xinyu, Liu Chunhe. Building Multi-Source Semantic Knowledge Graph for Drug Repositioning[J]. 数据分析与知识发现, 2022, 6(7): 87-98.
[9] Wang Lu, Le Xiaoqiu. Research Progress on Citation Analysis of Scientific Papers[J]. 数据分析与知识发现, 2022, 6(4): 1-15.
[10] Zheng Xiao, Li Shuqing, Zhang Zhiwang. Measuring User Item Quality with Rating Analysis for Deep Recommendation Model[J]. 数据分析与知识发现, 2022, 6(4): 39-48.
[11] Liu Kan, Xu Qinya, Yu Lu. Constructing Knowledge Graph for Business Environment[J]. 数据分析与知识发现, 2022, 6(4): 82-96.
[12] Yu Chuanming, Lin Hongjun, Zhang Zhengang. Joint Extraction Model for Entities and Events with Multi-task Deep Learning[J]. 数据分析与知识发现, 2022, 6(2/3): 117-128.
[13] Zhang Wei, Wang Hao, Chen Yuetong, Fan Tao, Deng Sanhong. Identifying Metaphors and Association of Chinese Idioms with Transfer Learning and Text Augmentation[J]. 数据分析与知识发现, 2022, 6(2/3): 167-183.
[14] Liu Zhenghao, Qian Yuxing, Yi Tianlong, Lv Huakui. Constructing Knowledge Graph for Financial Securities and Discovering Related Stocks with Knowledge Association[J]. 数据分析与知识发现, 2022, 6(2/3): 184-201.
[15] Cheng Zijia, Chen Chong. Question Comprehension and Answer Organization for Scientific Education of Epidemics[J]. 数据分析与知识发现, 2022, 6(2/3): 202-211.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn