Please wait a minute...
Data Analysis and Knowledge Discovery  2024, Vol. 8 Issue (2): 155-167    DOI: 10.11925/infotech.2096-3467.2022.1225
Current Issue | Archive | Adv Search |
Predicting Drug-Target Relationship Based on Relation Fusion and Bidirectional Mass Diffusion Model
Zhang Yunqiu(),Huang Qifei,Zhu Xiang
School of Public Health, Jilin University, Changchun 130021, China
Download: PDF (1306 KB)   HTML ( 8
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This study proposes a new method to predict the relationship between drugs and targets to improve the prediction performance. [Methods] Firstly, we used the SNF, AVG, and MAX methods to fuse multiple semantic relationships in drug and target similarity networks, which further enriched the semantic information of the networks. Then, we constructed a bidirectional diffusion model based on the fused similarity networks and the existing drug-target interaction network to predict the drug-target relationship. [Results] Compared with mainstream forecasting models, our method's AUC value index improved by 2.2% and 12.8%. With a retrospective study, the prediction scores ranked in the top 10, 20, and 30 drug-target relationship pairs, and clues and evidence related to 3, 8, and 11 drug-target pairs could be found in the literature. The SNF had the best fusion effect and maximized the prediction. [Limitations] We did not fuse similarities in objective attributes of drugs or targets, such as the chemical structure of drugs or sequence structure similarities of targets. The cold start problem in the relationship between new drugs and new targets still needs to be solved. [Conclusions] The prediction method proposed in this study could provide some references for the research on drug repositioning and relationship prediction of other biomedical entities.

Key wordsDrug      Target      Machine Learning      SNF     
Received: 18 November 2022      Published: 28 March 2023
ZTFLH:  R96  
  TP181  
  G35  
Fund:Humanities and Social Science Planning Project of Ministry of Education(18YJA870017)
Corresponding Authors: Zhang Yunqiu,ORCID:0000-0002-9790-9581,E-mail:yunqiu@jlu.edu.cn。   

Cite this article:

Zhang Yunqiu, Huang Qifei, Zhu Xiang. Predicting Drug-Target Relationship Based on Relation Fusion and Bidirectional Mass Diffusion Model. Data Analysis and Knowledge Discovery, 2024, 8(2): 155-167.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2022.1225     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2024/V8/I2/155

Detailed Architecture of Method
Relationship Fusion Process
Detailed Architecture of DTBMD
节点类型 来源 数量 边类型及数量
药物 DrugBank 708 药物-药物(10 036)
药物-靶标(1 923)
靶标 HPRD 1512 靶标-靶标(7 363)
疾病 CTD 5603 药物-疾病(199 214)
靶标-疾病(1 596 745)
Statistics of Nodes and Edges
ROC Curves of DTBMD with Different Similarity Fusion Methods
ROC Curves of Different Drug-Target Relationship Prediction Methods
排名 药物 靶标 PMID 具体描述
7 阿米替林 DRD2 22507762 阿米替林可上调DRD2[37]
8 氯氮平 COX-2 24768740 氯氮平治疗会引起环加氧酶-2表达增加[38]
9 喹硫平 Ptgs2 19587612 喹硫平会显著改变Ptgs2基因的表达[39]
11 氯氮平 SLC6A4 34082673 编码5-羟色胺转运蛋白的SLC6A4基因的rs1800532多态性可能与自杀易感性以及对锂和氯氮平的不良反应相关[40]
12 喹硫平 5-HTTLPR 27277475 对抗抑郁药喹硫平治疗反应的预测价值可能受到MDD中5-HTTLPR多态性的影响[41]
13 阿米替林 GABAA 31940131 阿米替林的内感受作用取决于 GABAA受体的功能活性[42]
18 氯氮平 SLC6A2 26282453 SLC6A2与氯氮平的治疗反应有关[43]
19 喹硫平 SLC6A2 29016993 去甲硫平的去甲肾上腺素转运蛋白占用可能是喹硫平抗抑郁作用的因素之一[44]
23 阿立哌唑 COX-2 29241811 阿立哌唑可抑制环加氧酶-2的mRNA表达水平[45]
25 奥氮平 SLC6A4 33432189 遗传和功能分析显示,奥氮平直接靶向SLC6A4[46]
27 阿立哌唑 SLC6A4 17242925 阿立哌唑与5-羟色胺相互作用[47]
Top 30 Drug-Target Pairs and Related Evidences
[1] 王娜, 常福厚, 钱新宇, 等. 我国新药研发的研究进展[J]. 中国药理学与毒理学杂志, 2019, 33(10): 839.
[1] (Wang Na, Chang Fuhou, Qian Xinyu, et al. Research Progress of New Drug Research and Development in China[J]. Chinese Journal of Pharmacology and Toxicology, 2019, 33(10): 839.)
[2] Pushpakom S, Iorio F, Eyers P A, et al. Drug Repurposing: Progress, Challenges and Recommendations[J]. Nature Reviews Drug Discovery, 2019, 18(1): 41-58.
doi: 10.1038/nrd.2018.168 pmid: 30310233
[3] Wang C, Kurgan L. Survey of Similarity-Based Prediction of Drug-Protein Interactions[J]. Current Medicinal Chemistry, 2020, 27(35): 5856-5886.
doi: 10.2174/0929867326666190808154841
[4] 张晗, 安欣宇, 刘春鹤. 基于多源语义知识图谱的药物知识发现: 以药物重定位为实证[J]. 数据分析与知识发现, 2022, 6(7): 87-98.
[4] (Zhang Han, An Xinyu, Liu Chunhe. Building Multi-Source Semantic Knowledge Graph for Drug Repositioning[J]. Data Analysis and Knowledge Discovery, 2022, 6(7): 87-98.)
[5] Wang B, Jiang J Y, Wang W, et al. Unsupervised Metric Fusion by Cross Diffusion[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2997-3004.
[6] Wang B, Mezlini A M, Demir F, et al. Similarity Network Fusion for Aggregating Data Types on a Genomic Scale[J]. Nature Methods, 2014, 11(3): 333-337.
doi: 10.1038/nmeth.2810 pmid: 24464287
[7] Wu G S, Liu J, Wang C H. Semi-Supervised Graph Cut Algorithm for Drug Repositioning by Integrating Drug, Disease and Genomic Associations[C]// Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Piscataway: IEEE, 2016: 223-228.
[8] Wu G S, Liu J, Wang C H. Predicting Drug-Disease Interactions by Semi-Supervised Graph Cut Algorithm and Three-Layer Data Integration[J]. BMC Medical Genomics, 2017, 10(5): Article No.79.
[9] Tangmanussukum P, Kawichai T, Suratanee A, et al. Heterogeneous Network Propagation with Forward Similarity Integration to Enhance Drug-Target Association Prediction[J]. PeerJ Computer Science, 2022, 8: e1124.
doi: 10.7717/peerj-cs.1124 pmid: 36262151
[10] Thafar M A, Olayan R S, Ashoor H, et al. DTiGEMS+: Drug-Target Interaction Prediction Using Graph Embedding, Graph Mining, and Similarity-Based Techniques[J]. Journal of Cheminformatics, 2020, 12(1): Article No.44.
[11] 孟岩, 汪云云. 典型半监督分类算法的研究分析[J]. 计算机技术与发展, 2017, 27(10): 43-48.
[11] (Meng Yan, Wang Yunyun. Research and Analysis of Typical Semi-Supervised Classification Algorithm[J]. Computer Technology and Development, 2017, 27(10): 43-48.)
[12] 王磊. 基于机器学习的药物-靶标相互作用预测研究[D]. 徐州: 中国矿业大学, 2018.
[12] (Wang Lei. Research on the Prediction of Drug-Target Interactions Based on Machine Learning[D]. Xuzhou: China University of Mining and Technology, 2018.)
[13] 张丽娟. 基于逻辑回归的药物与靶标相互作用关系预测[D]. 长沙: 湖南大学, 2018.
[13] (Zhang Lijuan. Drug Target Interaction Prediction Based on Logistic Regression[D]. Changsha: Hunan University, 2018.)
[14] Huang Y A, You Z H, Chen X. A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences[J]. Current Protein & Peptide Science, 2018, 19(5): 468-478.
[15] Zheng X P, He S, Song X, et al. DTI-RCNN: New Efficient Hybrid Neural Network Model to Predict Drug-Target Interactions[C]// Proceedings of the 27th International Conference on Artificial Neural. Cham: Springer, 2018: 104-114.
[16] Cheng F X, Liu C, Jiang J, et al. Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference[J]. PLoS Computational Biology, 2012, 8(5): e1002503.
doi: 10.1371/journal.pcbi.1002503
[17] Wang W H, Yang S, Li J. Drug Target Predictions Based on Heterogeneous Graph Inference[J]. Pacific Symposium on Biocomputing, 2013: 53-64.
[18] 李敏, 王晓桐, 罗慧敏, 等. 随机游走技术在网络生物学中的研究进展[J]. 电子学报, 2018, 46(8): 2035-2048.
doi: 10.3969/j.issn.0372-2112.2018.08.033
[18] (Li Min, Wang Xiaotong, Luo Huimin, et al. Progress on Random Walk and Its Application in Network Biology[J]. Acta Electronica Sinica, 2018, 46(8): 2035-2048.)
doi: 10.3969/j.issn.0372-2112.2018.08.033
[19] Chen X, Liu M X, Yan G Y. Drug-Target Interaction Prediction by Random Walk on the Heterogeneous Network[J]. Molecular BioSystems, 2012, 8(7): 1970-1978.
doi: 10.1039/c2mb00002d pmid: 22538619
[20] Zheng X D, Ding H, Mamitsuka H, et al. Collaborative Matrix Factorization with Multiple Similarities for Predicting Drug-Target Interactions[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2013: 1025-1033.
[21] Ezzat A, Zhao P L, Wu M, et al. Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(3): 646-656.
doi: 10.1109/TCBB.2016.2530062 pmid: 26890921
[22] Cui Z, Gao Y L, Liu J X, et al. L2,1-GRMF: An Improved Graph Regularized Matrix Factorization Method to Predict Drug-Target Interactions[J]. BMC Bioinformatics, 2019, 20(Suppl 8): 287.
doi: 10.1186/s12859-019-2768-7
[23] Yue X, Wang Z, Huang J G, et al. Graph Embedding on Biomedical Networks: Methods, Applications and Evaluations[J]. Bioinformatics, 2020, 36(4): 1241-1251.
doi: 10.1093/bioinformatics/btz718 pmid: 31584634
[24] Luo Y N, Zhao X B, Zhou J T, et al. A Network Integration Approach for Drug-Target Interaction Prediction and Computational Drug Repositioning from Heterogeneous Information[J]. Nature Communications, 2017, 8: Article No.573.
[25] Wan F P, Hong L X, Xiao A, et al. NeoDTI: Neural Integration of Neighbor Information from a Heterogeneous Network for Discovering New Drug-Target Interactions[J]. Bioinformatics, 2019, 35(1): 104-111.
doi: 10.1093/bioinformatics/bty543 pmid: 30561548
[26] Zeng X X, Zhu S Y, Lu W Q, et al. Target Identification Among Known Drugs by Deep Learning from Heterogeneous Networks[J]. Chemical Science, 2020, 11(7): 1775-1797.
doi: 10.1039/c9sc04336e pmid: 34123272
[27] Estrada E. Topological Structural Classes of Complex Networks[J]. Physical Review E, 2007, 75(1): 016103.
doi: 10.1103/PhysRevE.75.016103
[28] Grady L. Random Walks for Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 1768-1783.
doi: 10.1109/TPAMI.2006.233 pmid: 17063682
[29] van Laarhoven T, Nabuurs S B, Marchiori E. Gaussian Interaction Profile Kernels for Predicting Drug-Target Interaction[J]. Bioinformatics, 2011, 27(21): 3036-3043.
doi: 10.1093/bioinformatics/btr500 pmid: 21893517
[30] Zhou T, Ren J, Medo M, et al. How to Project a Bipartite Network?[J]. Physical Review E, 2007, 76(4): 046115.
doi: 10.1103/PhysRevE.76.046115
[31] Zhu X Z, Tian H, Zhang P, et al. Personalized Recommendation Based on Unbiased Consistence[J]. EPL (Europhysics Letters), 2015, 111(4): 48007.
doi: 10.1209/0295-5075/111/48007
[32] Deshpande M, Karypis G. Item-Based Top-N Recommendation Algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177.
doi: 10.1145/963770.963776
[33] Drugbank: Version 5.1.5[DB/OL]. (2020-01-03) [2020-01-30]. https://www.drugbank.ca/.
[34] Human Protein Reference Database: Version 9[DB/OL]. (2010-04-13) [2020-01-30]. http://www.hprd.org/.
[35] Comparative Toxicogenomics Database: Version 15982[DB/OL]. (2020-01-08) [2020-01-30]. http://ctdbase.org/.
[36] Valdeolivas A, Tichit L, Navarro C, et al. Random Walk with Restart on Multiplex and Heterogeneous Biological Networks[J]. Bioinformatics, 2019, 35(3): 497-505.
doi: 10.1093/bioinformatics/bty637 pmid: 30020411
[37] Lauterbach E C. Psychotropic Drug Effects on Gene Transcriptomics Relevant to Parkinson's Disease[J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2012, 38(2): 107-115.
[38] Zlatković J, Todorović N, Tomanović N, et al. Chronic Administration of Fluoxetine or Clozapine Induces Oxidative Stress in Rat Liver: A Histopathological Study[J]. European Journal of Pharmaceutical Sciences, 2014, 59: 20-30.
doi: 10.1016/j.ejps.2014.04.010 pmid: 24768740
[39] Orsetti M, Di Brisco F, Rinaldi M, et al. Some Molecular Effectors of Antidepressant Action of Quetiapine Revealed by DNA Microarray in the Frontal Cortex of Anhedonic Rats[J]. Pharmacogenetics and Genomics, 2009, 19(8): 600-612.
doi: 10.1097/FPC.0b013e32832ee573 pmid: 19587612
[40] de Berardis D, Vellante F, Pettorruso M, et al. Suicide and Genetic Biomarkers: Toward Personalized Tailored-Treatment with Lithium and Clozapine[J]. Current Pharmaceutical Design, 2021, 27(30): 3293-3304.
doi: 10.2174/1381612827666210603143353 pmid: 34082673
[41] Tatham E L, Hall G B C, Clark D, et al. The 5-HTTLPR and BDNF Polymorphisms Moderate the Association Between Uncinate Fasciculus Connectivity and Antidepressants Treatment Response in Major Depression[J]. European Archives of Psychiatry and Clinical Neuroscience, 2017, 267(2): 135-147.
doi: 10.1007/s00406-016-0702-9 pmid: 27277475
[42] Korolev A O, Kalinina T S, Volkova A V, et al. Role of GABAA Receptors in the Mechanism of in Vivo Psychotropic Activity of Amitriptyline in Rats[J]. Bulletin of Experimental Biology and Medicine, 2020, 168(3): 341-344.
doi: 10.1007/s10517-020-04704-0 pmid: 31940131
[43] Xu Q, Wu X, Li M, et al. Association Studies of Genomic Variants with Treatment Response to Risperidone, Clozapine, Quetiapine and Chlorpromazine in the Chinese Han Population[J]. The Pharmacogenomics Journal, 2016, 16(4): 357-365.
doi: 10.1038/tpj.2015.61
[44] Yatham L N, Sossi V, Ding Y S, et al. A Positron Emission Tomography Study of Norepinephrine Transporter Occupancy and Its Correlation with Symptom Response in Depressed Patients Treated with Quetiapine XR[J]. The International Journal of Neuropsychopharmacology, 2018, 21(2): 108-113.
doi: 10.1093/ijnp/pyx066
[45] Yoo S, Kim M Y, Cho J Y. Syk and SRC-Targeted Anti-Inflammatory Activity of Aripiprazole, an Atypical Antipsychotic[J]. Biochemical Pharmacology, 2018, 148: 1-12.
doi: S0006-2952(17)30710-4 pmid: 29241811
[46] Zhou M S, Wang Q Q, Zheng C L, et al. Drug Repurposing for Opioid Use Disorders: Integration of Computational Prediction, Clinical Corroboration, and Mechanism of Action Analyses[J]. Molecular Psychiatry, 2021, 26(9): 5286-5296.
doi: 10.1038/s41380-020-01011-y pmid: 33432189
[47] Stark A D, Jordan S, Allers K A, et al. Interaction of the Novel Antipsychotic Aripiprazole with 5-HT1A and 5-HT2A Receptors: Functional Receptor-Binding and in Vivo Electrophysiological Studies[J]. Psychopharmacology, 2007, 190(3): 373-382.
doi: 10.1007/s00213-006-0621-y
[48] 陈新谦, 金有豫, 汤光, 等. 新编药物学[M]. 第16版. 北京: 人民卫生出版社, 2007.
[48] (Chen Xinqian, Jin Youyu, Tang Guang, et al. New Edition Pharmacology[M]. 16th Edition. Beijing: People's Medical Publishing House, 2007.)
[49] 李科, 俞兰秀, 刘小雨, 等. γ-氨基丁酸改善睡眠作用机制的研究进展[J]. 食品工业科技, 2019, 40(14):353-358.
[49] (Li Ke, Yu Lanxiu, Liu Xiaoyu, et al. Research Progress on Improving Sleep Mechanism of γ-Aminobutyric Acid[J]. Science and Technology of Food Industry, 2019, 40(14):353-358.)
[1] Liu Tianchang, Wang Lei, Zhu Qinghua. Predicting User Churn of Smart Home-based Care Services Based on SHAP Interpretation[J]. 数据分析与知识发现, 2024, 8(1): 40-54.
[2] Liu Zhifeng, Wang Jimin. Review of Interpretable Machine Learning for Information Resource Management[J]. 数据分析与知识发现, 2024, 8(1): 16-29.
[3] Xu Chen, Zhang Wei. Detecting Crowdfunding Frauds Based on Textual and Imbalanced Data[J]. 数据分析与知识发现, 2023, 7(9): 125-135.
[4] Wu Jialun, Zhang Ruonan, Kang Wulin, Yuan Puwei. Deep Learning Model of Drug Recommendation Based on Patient Similarity Analysis[J]. 数据分析与知识发现, 2023, 7(6): 148-160.
[5] Wei Huanan, Lei Ming, Wang Xuefeng, Yu Yin. Analyzing Evolution of Basic Research Funding Orientation: Case Study of NSF[J]. 数据分析与知识发现, 2023, 7(5): 10-20.
[6] Lin Weizhen, Liu Hongwei, Chen Yanjun, Wen Zhanming, Yi Minqi. Customer Satisfaction Modelling for Healthcare Wearable Devices Through Online Reviews[J]. 数据分析与知识发现, 2023, 7(5): 145-154.
[7] Jiang Linfu, Yuan Zhenming, Zhang Xingwei, Jiang Huaqiang, Sun Xiaoyan. Ten-Year Prediction of Coronary Heart Disease Based on PCHD-TabNet[J]. 数据分析与知识发现, 2023, 7(5): 133-144.
[8] Lv Qi, Shangguan Yanhong, Zhang Lin, Huang Ying. Interdisciplinary Measurement Based on Automatic Classification of Text Content[J]. 数据分析与知识发现, 2023, 7(4): 56-67.
[9] Han Pu, Zhong Yule, Lu Haojie, Ma Shiwen. Identifying Named Entities of Adverse Drug Reaction with Adversarial Transfer Learning[J]. 数据分析与知识发现, 2023, 7(3): 131-141.
[10] Hao Zhiyuan, Ma Jie, Sun Wenjing. Simulation Research of Targeted Collaborative Decision-Making Model for Large Groups in Major Emergencies[J]. 数据分析与知识发现, 2023, 7(3): 80-96.
[11] Cheng Quan, She Dexin. Drug Recommendation Based on Graph Neural Network with Patient Signs and Medication Data[J]. 数据分析与知识发现, 2022, 6(9): 113-124.
[12] Qu Zongxi, Sha Yongzhong, Li Yutong. Predicting Major Infectious Diseases Based on Grey Wolf Optimization and Multi-machine Learning: Case Study of COVID-19[J]. 数据分析与知识发现, 2022, 6(8): 122-133.
[13] Guo Jinjing, Xia Guanghui, Huang Qi, He Liyun, Zhang Huabing. Detecting Signals of Adverse Drug Reactions with Data from Online Health Community[J]. 数据分析与知识发现, 2022, 6(7): 70-86.
[14] Zhang Han, An Xinyu, Liu Chunhe. Building Multi-Source Semantic Knowledge Graph for Drug Repositioning[J]. 数据分析与知识发现, 2022, 6(7): 87-98.
[15] Zhao Yang, Yan Zhouzhou, Shen Qiqi, Li Zhonghang. Evaluating Privacy Policy for Mobile Health APPs with Machine Learning[J]. 数据分析与知识发现, 2022, 6(5): 112-126.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn