Please wait a minute...
Data Analysis and Knowledge Discovery  2024, Vol. 8 Issue (2): 99-113    DOI: 10.11925/infotech.2096-3467.2022.1335
Current Issue | Archive | Adv Search |
Identifying Important Topics and Knowledge Flow Paths with Topic-Citation Fusion
Liang Shuang1,2,Liu Xiaoping1,2(),Chai Wenyue1,2
1National Science Library, Chinese Academy of Sciences, Beijing 100190, China
2Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
Download: PDF (1762 KB)   HTML ( 6
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] Understanding and exploring the internal mechanism and direction of knowledge flow, this paper provides references for science and technology innovation, scientific evaluation, and decision-making. [Methods] We established a topic-based knowledge network and constructed the topic importance indicators with their impact factors and node intersection degrees. We used the maximum path search algorithm based on these important topics to construct the knowledge inflow and outflow paths. [Results] The new method could effectively identify the important topics. We also identified the knowledge flow paths and the domains with the most significant knowledge dissemination. [Limitations] The measurement of knowledge flow intensity between nodes needs to consider citation motivations and types. [Conclusions] This paper identifies two-way knowledge flows between topics. Topic groups communicate closely with each other within each discipline. Knowledge flow paths provide valuable references for grasping the research topic developments as a whole.

Key wordsCitation Analysis      Topic Citation Network      Topic Importance      Knowledge Flow      Path Analysis     
Received: 16 December 2022      Published: 28 April 2023
ZTFLH:  G353  
Fund:Project of Literature and Information Capacity Building, Chinese Academy of Sciences(E1290423)
Corresponding Authors: Liu Xiaoping,ORCID:0000-0002-3342-8041,E-mail:liuxp@mail.las.ac.cn。   

Cite this article:

Liang Shuang, Liu Xiaoping, Chai Wenyue. Identifying Important Topics and Knowledge Flow Paths with Topic-Citation Fusion. Data Analysis and Knowledge Discovery, 2024, 8(2): 99-113.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2022.1335     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2024/V8/I2/99

Research Design and Methodology
Construction Process of Topic Reference Network
Knowledge Flow Path Construction Method (Taking Knowledge Outflow as an Example)
Topic Reference Network of Synthetic Biology Field
主题节点 入度 出度 节点交叉度
genome engineering 53 53 53.00
assembly engineering 51 48 49.48
metabolic engineering 47 48 47.50
gene regulation 48 43 45.43
gene expression 48 43 45.43
gene circuit 49 42 45.37
mathematical simulation and
functional testing
42 36 38.89
gene mutation 43 35 38.80
DNA sequence analysis 48 30 37.97
cell engineering 41 34 37.34
Node Crossover Degree in Topic Network (Partial)
主题 2002年 2003年 2004年 2019年 2020年 2021年
gene mutation 11/118 9/138 7/63 58/321 60/269 56/282
assembly engineering 4/5 1/3 4/28 212/1714 246/1786 240/1842
genome engineering 3/10 4/35 3/56 322/1940 380/2743 424/3280
metabolic engineering 0/0 0/0 1/0 393/2810 437/3477 453/3834
gene circuit 0/0 0/0 0/0 60/374 78/418 77/505
cell engineering 0/0 0/0 2/5 67/605 71/464 72/437
cluster 0/0 0/0 0/0 0/0 0/0 1/12
gene regulation 9/33 8/31 9/22 114/533 115/619 108/622
cancer treatment 37/252 52/215 62/328 125/745 151/1046 161/1546
biosensor 1/0 0/0 0/0 18/264 27/257 30/220
The Number of Literatures on the Topic in Different Years and the Corresponding Citation Frequency (Partial)
主题 2002年 2003年 2004年 2019年 2020年 2021年 平均影响因子
gene mutation 10.73 15.33 9.00 5.53 4.48 5.04 7.52
assembly engineering 1.25 3.00 7.00 8.08 7.26 7.68 7.34
genome engineering 3.33 8.75 18.67 6.02 7.22 7.74 6.47
metabolic engineering 0 0 0 7.15 7.96 8.46 6.31
gene circuit 0 0 0 6.23 5.36 6.56 6.24
cell engineering 0 0 2.50 9.03 6.54 6.07 6.06
cluster 0 0 0 0 0 12.00 6.05
gene regulation 3.67 3.88 2.44 4.68 5.38 5.76 5.98
cancer treatment 6.81 4.13 5.29 5.96 6.93 9.60 5.92
biosensor 0 0 0 14.67 9.52 7.33 5.64
Impact Factors and Average Values of Topics in Different Years (Partial)
主题节点 交叉度 k 平均影响因子 T I F ˉ 重要度值 I
assembly engineering 49.48 7.34 363.18
genome engineering 53.00 6.47 342.91
metabolic engineering 47.50 6.31 299.73
gene mutation 38.80 7.52 291.78
gene circuit 45.37 6.24 283.11
gene regulation 45.43 5.98 271.67
cell engineering 37.34 6.06 226.28
cancer treatment 36.47 5.92 215.90
DNA sequence analysis 37.97 4.88 185.29
biosensor 28.50 5.64 160.74
Importance Value of Topic Node (Partial)
The Change of Network Efficiency Decline Ratio and Maximum Connectivity Coefficient with Respect to the Number of Nodes Removed
知识流入视角(作为施引主题) 知识流出视角(作为被引主题)
被引主题 引用次数 流入比例 施引主题 引用次数 流出比例
cell engineering 7 0.03 cell engineering 3 0.01
molecular biology 2 0.01 molecular biology 3 0.01
assembly engineering 40 0.17 assembly engineering 40 0.20
gene circuit 28 0.12 gene circuit 25 0.12
biosensor 2 0.01 biosensor 2 0.01
metabolic engineering 14 0.06 metabolic engineering 15 0.07
cancer treatment 2 0.01 cancer treatment 2 0.01
DNA sequence analysis 10 0.04 DNA sequence analysis 10 0.05
mathematical simulation and functional testing 14 0.06 mathematical simulation and functional testing 15 0.07
gene mutation 10 0.04 gene mutation 2 0.01
network biology 5 0.02 enzyme catalysis 4 0.02
gene regulation 52 0.23 gene regulation 18 0.09
gene expression 9 0.04 gene expression 7 0.03
genome engineering 31 0.14 genome engineering 49 0.24
The Proportion of Knowledge Flow Between Topics from the Perspective of Knowledge Inflow and Outflow
Path Construction from the Perspective of Knowledge Inflow
Path Construction from the Perspective of Knowledge Outflow
[1] Spender J C. Making Knowledge the Basis of a Dynamic Theory of the Firm[J]. Strategic Management Journal, 1996, 17(S2): 45-62.
doi: 10.1002/smj.v17.2s
[2] Drucker P F. Managing in a Time of Great Change[M]. Oxford: Butterworth Heinemann, 1995.
[3] Nissen M E. Initiating a System for Visualizing and Measuring Dynamic Knowledge[J]. Technological Forecasting and Social Change, 2019, 140: 169-181.
doi: 10.1016/j.techfore.2018.04.008
[4] Hagel III J, Brown J S, Davison L. Measuring the Forces of Long-Term Change: The 2009 Shift Index[EB/OL]. [2022-07-22]. https://www.johnseelybrown.com/shiftindex.pdf.
[5] 赵迪. 创新思维: 科学知识增长的灵魂[D]. 长春: 吉林大学, 2018.
[5] (Zhao Di. Innovative Thinking: The Soul of Scientific Knowledge Increasing[D]. Changchun: Jilin University, 2018.)
[6] Zhuge H. Discovery of Knowledge Flow in Science[J]. Communications of the ACM, 2006, 49(5): 101-107.
[7] Garfield E, Sher I H, Torpie R J. The Use of Citation Data in Writing the History of Science[R]. Philadelphia: Institute for Scientific Information, 1964.
[8] Hummon N P, Dereian P. Connectivity in a Citation Network: The Development of DNA Theory[J]. Social Networks, 1989, 11(1): 39-63.
doi: 10.1016/0378-8733(89)90017-8
[9] 刘懿, 周丽英. 主路径分析方法研究进展[J]. 数字图书馆论坛, 2019(10): 8-15.
[9] (Liu Yi, Zhou Liying. Literature Review about Main Path Analysis Method[J]. Digital Library Forum, 2019(10): 8-15.)
[10] Lucio-Arias D, Leydesdorff L. Main-Path Analysis and Path-Dependent Transitions in HistCiteTM-Based Historiograms[J]. Journal of the American Society for Information Science and Technology, 2008, 59(12): 1948-1962.
doi: 10.1002/asi.v59:12
[11] 马瑞敏, 张欣. 基于Pathfinder算法的领域知识交流主路径发现研究[J]. 情报学报, 2016, 35(8): 856-863.
[11] (Ma Ruimin, Zhang Xin. Discovering the Knowledge Communication Main Path of a Domain Based on Pathfinder Algorithm[J]. Journal of the China Society for Scientific and Technical Information, 2016, 35(8): 856-863.)
[12] 马瑞敏, 杨雨华. 基于节点重要性的领域主路径发现新探索[J]. 情报杂志, 2018, 37(3): 71-78, 93.
[12] (Ma Ruimin, Yang Yuhua. Discovering Main Path of a Domain Based on Node Importance[J]. Journal of Intelligence, 2018, 37(3): 71-78, 93.)
[13] 文庭孝, 汪全莉, 王丙炎, 等. 知识网络及其测度研究[J]. 图书馆, 2009(1): 1-6.
[13] (Wen Tingxiao, Wang Quanli, Wang Bingyan, et al. Research of Knowledge Network and Mearurement[J]. Library, 2009(1): 1-6.)
[14] 刘向, 马费成, 王晓光. 知识网络的结构及过程模型[J]. 系统工程理论与实践, 2013, 33(7): 1836-1844.
doi: 10.12011/1000-6788(2013)7-1836
[14] (Liu Xiang, Ma Feicheng, Wang Xiaoguang. Formation and Process Model of Knowledge Networks[J]. Systems Engineering-Theory & Practice, 2013, 33(7): 1836-1844.)
doi: 10.12011/1000-6788(2013)7-1836
[15] 何劲, 关鹏, 王曰芬. 作者-主题关联的学科知识网络构建与演化分析[J]. 情报科学, 2019, 37(1): 56-62, 67.
[15] (He Jin, Guan Peng, Wang Yuefen. Construction and Evolution Analysis of Discipline Knowledge Network Based on Author-Topic Association[J]. Information Science, 2019, 37(1): 56-62, 67.)
[16] 王菲菲, 王筱涵, 徐硕, 等. 基于三维引文关联网络的潜在知识流动探测——以基因编辑领域为例[J]. 情报学报, 2021, 40(2): 184-193.
[16] (Wang Feifei, Wang Xiaohan, Xu Shuo, et al. Potential Knowledge Flow Detection from an Integrated Perspective of Three-Dimensional Citations: A Case Study of Gene Editing[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(2): 184-193.)
[17] 商宪丽. 基于主题引用网络的交叉学科知识传播研究——以数字图书馆为例[J]. 情报科学, 2018, 36(8): 53-59, 66.
[17] (Shang Xianli. Research on Knowledge Dissemination in Cross-Disciplines Based on Topic Citation Network——An Example of Digital Library[J]. Information Science, 2018, 36(8): 53-59, 66.)
[18] Yan E J. Finding Knowledge Paths Among Scientific Disciplines[J]. Journal of the Association for Information Science and Technology, 2014, 65(11): 2331-2347.
doi: 10.1002/asi.2014.65.issue-11
[19] 关鹏. 整合主题的学科知识网络建模与演化机理研究[D]. 南京: 南京理工大学, 2018.
[19] (Guan Peng. Research on Modeling and Evolution Mechanism of Discipline Knowledge Network Based on Integrating Topic[D]. Nanjing: Nanjing University of Science and Technology, 2018.)
[20] 董坤, 许海云, 崔斌. 知识流动研究述评[J]. 情报学报, 2020, 39(10): 1120-1132.
[20] (Dong Kun, Xu Haiyun, Cui Bin. A Review of Knowledge Flow Research[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(10): 1120-1132.)
[21] 王曰芬, 王金树, 关鹏. 主题-主题关联的学科知识网络构建与演化分析[J]. 情报科学, 2018, 36(9): 9-15, 102.
[21] (Wang Yuefen, Wang Jinshu, Guan Peng. Research on Construction and Evolution Analysis of Discipline Knowledge Network Based on Topics Association[J]. Information Science, 2018, 36(9): 9-15, 102.)
[22] Zhang G J, Liu L N, Wei F F. Key Nodes Mining in the Inventor-Author Knowledge Diffusion Network[J]. Scientometrics, 2019, 118(3): 721-735.
doi: 10.1007/s11192-019-03005-2
[23] Zhao S X, Ye F Y. Exploring the Directed h-Degree in Directed Weighted Networks[J]. Journal of Informetrics, 2012, 6(4): 619-630.
doi: 10.1016/j.joi.2012.06.007
[24] 刘臣, 张庆普, 单伟, 等. 学科知识流动网络的构建与分析[J]. 情报学报, 2009, 28(2): 257-265.
[24] (Liu Chen, Zhang Qingpu, Shan Wei, et al. Construction and Analysis of Disciplinary Knowledge Flow Network[J]. Journal of the China Society for Scientific and Technical Information, 2009, 28(2): 257-265.)
[25] 毕崇武, 叶光辉, 彭泽, 等. 引文内容视角下的引文网络知识流动效应研究[J]. 情报科学, 2022, 40(2): 49-58.
[25] (Bi Chongwu, Ye Guanghui, Peng Ze, et al. Network Analysis on Knowledge Flow in Citation Network from the Perspective of Citation Content[J]. Information Science, 2022, 40(2): 49-58.)
[26] Sugiyama K, Kumar T, Kan M Y, et al. Identifying Citing Sentences in Research Papers Using Supervised Learning[C]// Proceedings of the 2010 International Conference on Information Retrieval & Knowledge Management. Piscataway: IEEE, 2010: 67-72.
[27] 夏红玉, 胡潜, 王忠义. 基于引文重要性的知识流动主路径分析[J]. 情报学报, 2022, 41(5): 451-462.
[27] (Xia Hongyu, Hu Qian, Wang Zhongyi. Tracing the Knowledge Flow Main Path Based on Important Citations[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(5): 451-462.)
[28] Kim M, Baek I, Song M. Topic Diffusion Analysis of a Weighted Citation Network in Biomedical Literature[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 329-342.
doi: 10.1002/asi.2018.69.issue-2
[29] Ma R M, Yan E J. Uncovering Inter-Specialty Knowledge Communication Using Author Citation Networks[J]. Scientometrics, 2016, 109(2): 839-854.
doi: 10.1007/s11192-016-2091-2
[30] Yan E J. Research Dynamics, Impact, and Dissemination: A Topic-Level Analysis[J]. Journal of the Association for Information Science and Technology, 2015, 66(11): 2357-2372.
doi: 10.1002/asi.2015.66.issue-11
[31] 周立欣, 刘臣, 霍良安, 等. 基于交叉度的有向网络中心节点识别算法研究[J]. 计算机应用研究, 2016, 33(11): 3299-3302, 3306.
[31] (Zhou Lixin, Liu Chen, Huo Liang'an, et al. Identification Algorithms of Center Node in Directed Complex Networks Based on Cross Degree[J]. Application Research of Computers, 2016, 33(11): 3299-3302, 3306.)
[32] Mann G S, Mimno D, McCallum A. Bibliometric Impact Measures Leveraging Topic Analysis[C]// Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries. New York: ACM, 2006: 65-74.
[33] 蒋林承. 复杂网络节点和边重要性度量以及多源信息传播问题研究[D]. 长沙: 国防科技大学, 2018.
[33] (Jiang Lincheng. Research on Identifying Node and Edge Importance and Influence Maximization in Complex Networks[D]. Changsha: National University of Defense Technology, 2018.)
[34] 王盼娣, 熊小娟, 付萍, 等. 《生物安全法》实施背景下对合成生物学的监管[J]. 华中农业大学学报, 2021, 40(6): 231-245.
[34] (Wang Pandi, Xiong Xiaojuan, Fu Ping, et al. Regulation of Synthetic Biology under Background of Implementing Biosafety Law[J]. Journal of Huazhong Agricultural University, 2021, 40(6): 231-245.)
[35] 张先恩. 中国合成生物学发展回顾与展望[J]. 中国科学(生命科学), 2019, 49(12): 1543-1572.
[35] Zhang Xian'en. Synthetic Biology in China: Review and Prospects[J]. Scientia Sinica (Vitae), 2019, 49(12): 1543-1572.)
[36] 阿茹娜, 郑婉颖, 俞如旺. 合成生物学及其应用研究概述[J]. 生物学教学, 2019, 44(10): 5-8.
[36] (E Ru'na, Zheng Wanying, Yu Ruwang. A Brief Review on Synthetic Biology and Its Application[J]. Biology Teaching, 2019, 44(10): 5-8.)
[37] Shapira P, Kwon S, Youtie J. Tracking the Emergence of Synthetic Biology[J]. Scientometrics, 2017, 112(3): 1439-1469.
doi: 10.1007/s11192-017-2452-5 pmid: 28804177
[1] Li Jialei, An Peijun, Xiao Xiantao. Review of Methods for Interdisciplinary Topic Identification[J]. 数据分析与知识发现, 2023, 7(4): 1-15.
[2] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[3] Wang Yuefen,Fu Zhu,Wu Peng. Tech-Framework for Semantic Knowledge Management in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 2-10.
[4] Wu Jiang,He Chaocheng,Ma Panhao. Analyzing Interaction of MOOC Users with Iteration Super Centrality[J]. 数据分析与知识发现, 2017, 1(8): 1-8.
[5] Wang Yuefen,Fu Zhu,Chen Bikun. Analyzing Knowledge Structure Research with LDA Model[J]. 现代图书情报技术, 2016, 32(4): 8-19.
[6] Lu Chao, Zhang Chengzhi. Study on the Reference Network of Single Academic Article Based on Citation Content[J]. 现代图书情报技术, 2014, 30(10): 33-41.
[7] Zhang Sufang,Song Hu. The Construction of a Citation Retrieval and Analysis Automation System[J]. 现代图书情报技术, 2014, 30(1): 92-96.
[8] Chen Liang, Zhang Zhiqiang, Shang Weijiao. Reviews on Development of Patent Citation Research[J]. 现代图书情报技术, 2013, 29(7/8): 75-81.
[9] Chen Shiji, Shi Liwen, Li Dongmei, Zuo Wenge. Review on Normalization Methods of Citation Counts[J]. 现代图书情报技术, 2012, 28(4): 54-60.
[10] Fan Yunman, Ma Jianxia. Review on the LDA-based Techniques Detection for the Field Emerging Topic[J]. 现代图书情报技术, 2012, (12): 58-65.
[11] Hu Zhigang, Chen Chaomei, Liu Zeyuan, Hou Haiyan. Design and Implementation of the Citation Analysis System Based on XML Full-text Articles[J]. 现代图书情报技术, 2012, (11): 72-77.
[12] Chen Shiji. Survey of Approaches to Research Front Detection[J]. 现代图书情报技术, 2009, (9): 28-33.
[13] Chen Yijia,Zhao Xing. Study on knowledge Communication of International Information &|Library Science: A Perspective of Journal Citation Networks[J]. 现代图书情报技术, 2009, 25(6): 55-60.
[14] Sun Taotao,Steven A.Morris,Huang Yaming. Timeline Visualization of Patents Based on Citation Analysis[J]. 现代图书情报技术, 2008, 24(6): 51-55.
[15] Liu Jiajia,Dong Min,Fang Shu . A Study on the Foreign Patent Information Analysis Software Tools[J]. 现代图书情报技术, 2007, 2(2): 67-74.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn