Please wait a minute...
New Technology of Library and Information Service  2009, Vol. Issue (10): 34-39    DOI: 10.11925/infotech.1003-3513.2009.10.06
Current Issue | Archive | Adv Search |
ECRec:e-Commerce Personalized Recommendation Management Based on Collaborative Filtering
Li Cong
(School of Computer Science, Sichuan Normal University, Chengdu 610066, China)
Export: BibTeX | EndNote (RIS)      

To help e-Commerce websites provide personalized recommendation management based on collaborative filtering, an e-Commerce collaborative filtering prototype that is called ECRec, is proposed and implemented. ECRec includes two basic algorithms and four improved algorithms, and its architecture is independent on e-Commerce business systems,consequently, ECRec has a better portability and maintainability. Moreover, the algorithm interface in ECRec is embedded, thus ECRec has the characteristics of open architecture, and websites can add more collaborative filtering algorithms into ECRec.

Key wordse-Commerce      Collaborative filtering      Recommendation systems      ECRec     
Received: 11 September 2009      Published: 25 October 2009


Corresponding Authors: Li Cong     E-mail:
About author:: Li Cong

Cite this article:

Li Cong. ECRec:e-Commerce Personalized Recommendation Management Based on Collaborative Filtering. New Technology of Library and Information Service, 2009, (10): 34-39.

URL:     OR

[1] Borchers A, Herlocker J, Konstan J A, et al. Ganging up on Information Overload[J]. Computer, 1998, 31(4): 106-108.
[2] Schafer J B, Konstan J A, Riedl J. Recommender Systems in e-Commerce[C]. In: Proceedings of the 1st ACM Conference on Electronic Commerce. New York: ACM Press, 1999:158-166.
[3] Schafer J B, Konstan J A, Riedl J. e-Commerce Recommendation Applications[J]. Data Mining and Knowledge Discovery, 2001, 5(1-2): 115-153.
[4] Demiriz A. Enhancing Product Recommender Systems on Sparse Binary Data[J]. Data Mining and Knowledge Discovery, 2004, 9(2): 147-170.
[5] Karypis G. Evaluation of Item-based Top-n Recommendation Algorithms[C]. In: Proceedings of the 10th International Conference on Information and Knowledge Management. New York: ACM Press, 2001: 247-254.
[6] Sarwar B M. Sparsity, Scalability, and Distribution in Recommender Systems[D]. Minneapolis, MN: University of Minnesota, 2001.
[7] Deshpande M, Karypis G. Item-based Top-n Recommendation Algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177.
[8] Shardanand U, Maes P. Social Information Filtering: Algorithms for Automating “ Word of Mouth”[C]. In: Proceedings of the 1995 ACM SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 1995:210-217.
[9] Rosenthal R, Rosnow R. Essentials of Behavioral Research: Methods and Data and Analysis[M]. 2nd Edition. New York: McGraw-Hill, 1991.
[10] Balabanovié M, Shoham Y. Fab: Content-based, Collaborative Recommendation[J]. Communications of the ACM, 1997, 40(3): 66-72.
[11] Nichols D M. Implicit Rating and Filtering[C]. In: Proceedings of the 5th DELOS Workshop on Filtering and Collaborative Filtering. Sophia Antipolis, France: ERCIM, 1997:31-36.
[12] Resnick P, Iacovou N, Suchak M, et al. Grouplens: An Open Architecture for Collaborative Filtering of Netnews[C]. In: Proceediings of the 1994 ACM on Computer Supported Cooperative Work. New York: ACM Press, 1994:175-186.
[13] Sarwar B, Karypis G, Konstan J, et al. Item-based Collaborative Filtering Recommendation Algorithms[C]. In: Proceediings of the 10th International Conference on World Wide Web. New York: ACM Press, 2001:285-295.
[14] 李聪, 梁昌勇, 马丽. 基于领域最近邻的协同过滤推荐算法[J]. 计算机研究与发展, 2008, 45(9): 1532-1538.
[15] 梁昌勇, 李聪, 杨善林. 一种基于Rough集理论的最近邻协同过滤算法[J]. 情报学报,待发.
[16] 李聪. 电子商务推荐系统中协同过滤瓶颈问题研究[D]. 合肥: 合肥工业大学, 2009.
[17] 李聪, 梁昌勇. 适应用户兴趣变化的协同过滤增量更新机制[J]. 情报学报,待发.
[18] 霍华, 冯博琴. 基于压缩稀疏矩阵矢量相乘的文本相似度计算[J]. 小型微型计算机系统, 2005, 26(6): 988-990.
[19] 严蔚敏, 吴伟民. 数据结构(C语言版)[M]. 北京: 清华大学出版社, 2002.
[20] 李聪, 梁昌勇. 基于属性值偏好矩阵的协同过滤推荐算法[J]. 情报学报, 2008, 27(6): 884-890.

[1] Li Zhenyu, Li Shuqing. Deep Collaborative Filtering Algorithm with Embedding Implicit Similarity Groups[J]. 数据分析与知识发现, 2021, 5(11): 124-134.
[2] Yang Chen, Chen Xiaohong, Wang Chuhan, Liu Tingting. Recommendation Strategy Based on Users’ Preferences for Fine-Grained Attributes[J]. 数据分析与知识发现, 2021, 5(10): 94-102.
[3] Yang Heng,Wang Sili,Zhu Zhongming,Liu Wei,Wang Nan. Recommending Domain Knowledge Based on Parallel Collaborative Filtering Algorithm[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[4] Su Qing,Chen Sizhao,Wu Weimin,Li Xiaomei,Huang Tiankuan. Personalized Recommendation Model Based on Collaborative Filtering Algorithm of Learning Situation[J]. 数据分析与知识发现, 2020, 4(5): 105-117.
[5] Zheng Songyin,Tan Guoxin,Shi Zhongchao. Recommending Tourism Attractions Based on Segmented User Groups and Time Contexts[J]. 数据分析与知识发现, 2020, 4(5): 92-104.
[6] Ding Yong,Chen Xi,Jiang Cuiqing,Wang Zhao. Predicting Online Ratings with Network Representation Learning and XGBoost[J]. 数据分析与知识发现, 2020, 4(11): 52-62.
[7] Fusen Jiao,Shuqing Li. Collaborative Filtering Recommendation Based on Item Quality and User Ratings[J]. 数据分析与知识发现, 2019, 3(8): 62-67.
[8] Shan Li,Yehui Yao,Hao Li,Jie Liu,Karmapemo. ISA Biclustering Algorithm for Group Recommendation[J]. 数据分析与知识发现, 2019, 3(8): 77-87.
[9] Xiaofeng Li,Jing Ma,Chi Li,Hengmin Zhu. Identifying Commodity Names Based on XGBoost Model[J]. 数据分析与知识发现, 2019, 3(7): 34-41.
[10] Yu Chuanming,Guo Yajing,Gong Yutian,Huang Manyu,Peng Hufeng. Evolution and Regional Differences of E-commerce Policies for Rural Poverty Reduction Based on Topic over Time Model[J]. 数据分析与知识发现, 2018, 2(7): 34-45.
[11] Li Jie,Yang Fang,Xu Chenxi. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[12] Wang Daoping,Jiang Zhongyang,Zhang Boqing. Collaborative Filtering Algorithm Based on Gray Correlation Analysis and Time Factor[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[13] Wang Yong,Wang Yongdong,Guo Huifang,Zhou Yumin. Measuring Item Similarity Based on Increment of Diversity[J]. 数据分析与知识发现, 2018, 2(5): 70-76.
[14] Hua Lingfeng,Yang Gaoming,Wang Xiujun. Recommending Diversified News Based on User’s Locations[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[15] Wang Yu,Li Xiuxiu. Evaluating Business Reputation with E-Commerce Comments[J]. 数据分析与知识发现, 2017, 1(8): 59-67.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938