Please wait a minute...
Advanced Search
现代图书情报技术  2016, Vol. 32 Issue (5): 64-71    DOI: 10.11925/infotech.1003-3513.2016.05.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于模糊情感计算的商品在线评论用户品牌转换意向研究*
张艳丰1,2(),李贺1,彭丽徽2
1吉林大学管理学院 长春 130022
2长沙师范学院图书馆 长沙 410100
Research on the Brand Switching Intention of Online Product Reviews Based on the Fuzzy Sentiment Calculation
Zhang Yanfeng1,2(),Li He1,Peng Lihui2
1School of Management, Jilin University, Changchun 130022, China
2Library of Changsha Normal University, Changsha 410100, China
全文: PDF(590 KB)   HTML ( 64
输出: BibTeX | EndNote (RIS)      
摘要 

目的】通过挖掘电子商务平台冗杂的在线评论信息, 对消费者品牌转换意向进行模糊计算和类型划分。【方法】以品牌转换意向模型为基础构建在线评论的模糊情感词典, 通过对模糊情感词典的加工和整理, 使用模糊数学方法并制定模糊推理规则, 计算产品的品牌转换意向和转换类型。【结果】可以有效地抽取出在线评论中的模糊情感词, 实现了品牌转换意向的模糊计算归类。【局限】模糊情感词典构建规则复杂, 后期需要人工识别与分类, 较为费时费力。【结论】提出的在线评论用户品牌转换意向计算方法得到了较好的实验检验效果, 可为在线产品的品牌营销和预警提供信息决策。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张艳丰
李贺
彭丽徽
关键词 模糊情感模糊计算在线评论评论挖掘品牌转换    
Abstract

[Objective] We explore the changing of consumer’s favorite brands by analyzing online product reviews from a popular E-commerce platform in China. [Methods] First, we built a fuzzy sentiment dictionary for online product reviews based on brand switching intention model. Second, we defined rules for a Fuzzy Inference System to calculate customer brand switching intention and switching types. [Results] We successfully extracted vague sentimental terms from the online product reviews, and then categorized consumers’ intentions. [Limitations] The fuzzy sentiment dictionary was built with complex rules and required many time consuming follow-up amendments. [Conclusions] The proposed model can provide decisive information for online marketing and early warning systems.

Key wordsFuzzy sentiment    Fuzzy calculation    Online reviews    Comment mining    Brand switch
收稿日期: 2015-12-16     
基金资助:*本文系国家科技支撑计划课题“专利信息为科研项目管理提供服务的模型方法”(项目编号: 2013BAH21B05)的研究成果之一
引用本文:   
张艳丰,李贺,彭丽徽. 基于模糊情感计算的商品在线评论用户品牌转换意向研究*[J]. 现代图书情报技术, 2016, 32(5): 64-71.
Zhang Yanfeng,Li He,Peng Lihui. Research on the Brand Switching Intention of Online Product Reviews Based on the Fuzzy Sentiment Calculation. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2016.05.08.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2016.05.08
[1] 中国互联网信息中心. 2014年中国网络购物市场研究报告[EB/OL]. [2015-09-16]. .
[1] (CNNIC. Research Report on China’s Online Shopping Market in 2014 [EB/OL]. [2015-09-16].
[2] Utz S, Kerkhof P, Van Den Bos J. Consumers Rule: How Consumer Reviews Influence Perceived Trustworthiness of Online Stores[J]. Electronic Commerce Research and Applications, 2012, 11(1): 49-58.
[3] 曾润喜, 王君泽, 杜洪涛. 新媒体时代网络评论观点信息发现机制研究[J]. 图书情报工作, 2015, 59(14): 111-116, 148.
[3] (Zeng Runxi, Wang Junze, Du Hongtao.Research on Opinion Extraction Mechanism of Web Information Reviews in New Media Times[J]. Library and Information Service, 2015, 59(14): 111-116, 148.)
[4] Dellarocas C, Zhang X, Awad N F.Exploring the Value of Online Product Reviews in Forecasting Sales: The Case of Motion Pictures[J]. Journal of Interactive Marketing, 2007, 21(4): 23-45.
[5] Rose S, Clark M, Samouel P, et al.Online Customer Experience in E-Retailing: An Empirical Model of Antecedents and Outcomes[J]. Journal of Retailing, 2012, 88(2): 308-322.
[6] 钱颖, 王西子, 倪君彧. 转移成本在在线用户的忠诚度中的研究评述[J]. 情报杂志, 2015, 34(3): 203-207.
[6] (Qian Ying,Wang Xizi,Ni Junyu.Review of Research on the Role of Switching Costs in Loyalty of Online Users[J]. Journal of Intelligence, 2015, 34(3): 203-207.)
[7] Mudambi S M, Schuff D.What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon.com[J]. MIS Quarterly, 2010, 34(1): 185-200.
[8] 郝媛媛, 叶强, 李一军. 基于影评数据的在线评论有用性影响因素研究[J]. 管理科学学报, 2010, 13(8): 78-88, 96.
[8] (Hao Yuanyuan, Ye Qiang, Li Yijun.Research on Online Impact Factors of Customer Reviews Usefulness Based on Movie Reviews Data[J]. Journal of Management Sciences in China, 2010, 13(8): 78-88, 96.)
[9] 那日萨, 李媛. 基于在线评论的消费者模糊情感计算与推理[J]. 情报学报, 2011, 30(4): 412-423.
[9] (Zhao Narisa, Li Yuan.Online-Review-Based Fuzzy Computing and Inference of Consumer Sentiment[J]. Journal of the China Society for Scientific and Technical Information, 2011, 30(4): 412-423.)
[10] 宋爽, 那日萨, 张杨. 基于在线评论的消费者品牌转换意向模糊推理[J]. 山东大学学报: 理学版, 2014, 49(12): 7-11.
[10] (Song Shuang, Zhao Narisa, Zhang Yang.Approximate Reasoning Research of Customers Brand Switching Intention Based on Online Reviews[J]. Journal of Shandong University: Natural Science, 2014, 49(12): 7-11.)
[11] Bhattacherjee A, Perols J, Sanford C.Information Technology Continuance: A Theoretic Extension and Empirical Test[J]. Journal of Computer Information Systems, 2008, 49(1): 17-26.
[12] HowNet [EB/OL]. [2015-11-10]. .
[13] 数据堂. 台湾大学NTUSD-简体中文情感极性词典[EB/OL]. [2015-11-11]. .
[13] (Data Tang. Taiwan University-The Polarity of Simplified Chinese Emotional Dictionary [EB/OL]. [2015-11-11].
[14] 董丽丽, 赵繁荣, 张翔. 基于领域本体、情感词典的商品评论倾向性分析[J]. 计算机应用与软件, 2014, 31(12): 104-108, 194.
[14] (Dong Lili, Zhao Fanrong, Zhang Xiang.Analysing Propensity of Product Reviews Based on Domain Ontology and Sentiment Lexicon[J]. Computer Applications and Software, 2014, 31(12): 104-108, 194.)
[15] 娄德成, 姚天昉. 汉语句子语义极性分析和观点抽取方法的研究[J]. 计算机应用, 2006, 26(11): 2622-2625.
[15] (Lou Decheng, Yao Tianfang.Semantic Polarity Analysis and Opinion Mining on Chinese Review Sentences[J]. Computer Applications, 2006, 26(11): 2622-2625.)
[16] LTP-Cloud.语言技术平台云[EB/OL]. [2015-11-21]. .
[16] (LTP-Cloud. Language Technology Platform Cloud [EB/OL]. [2015-11-21].
[17] 何跃, 宋灵犀, 齐丽云. 负面事件中的品牌网络口碑溢出效应研究——以“圆通夺命快递”事件为例[J]. 现代图书情报技术, 2015(10): 58-64.
[17] (He Yue, Song Lingxi, Qi Liyun.Spillover Effect of Internet Word of Mouth in Negative Events——Take the “Deadly Yuantong Express” Event for an Example[J]. New Technology of Library and Information Service, 2015(10): 58-64.)
[18] Ganesh J, Arnold M J, Reynolds K E.Understanding the Customer Base of Service Providers: An Examination of the Differences Between Switchers and Stayers[J]. Journal of Marketing, 2000, 64(3): 65-87.
[19] 蔡晓珍, 徐健, 吴思竹. 面向情感分析的用户评论过滤模型研究[J]. 现代图书情报技术, 2014(4): 58-64.
[19] (Cai Xiaozhen, Xu Jian, Wu Sizhu.Research on Filter Model of Customer Review for Sentiment Analysis[J]. New Technology of Library and Information Service, 2014(4): 58-64.)
[1] 余本功,张培行,许庆堂. 基于F-BiGRU情感分析的产品选择方法*[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[2] 吴江,刘弯弯. 什么样的评论更容易获得有用性投票*——以亚马逊网站研究为例[J]. 数据分析与知识发现, 2017, 1(9): 16-27.
[3] 李慧,胡云凤. 基于动态情感主题模型的在线评论分析*[J]. 数据分析与知识发现, 2017, 1(9): 74-82.
[4] 张艳丰,李贺,彭丽徽,侯力铁. 基于情感语义特征抽取的在线评论有用性分类算法与应用[J]. 数据分析与知识发现, 2017, 1(12): 74-83.
[5] 杨海霞,吴维芳,孙含林. 基于STM分析旅行者对不同档次酒店的偏好差异[J]. 现代图书情报技术, 2016, 32(9): 51-57.
[6] 高松,王洪伟,冯罡,王伟. 面向在线评论的比较观点挖掘研究综述*[J]. 现代图书情报技术, 2016, 32(10): 1-12.
[7] 唐晓波, 邱鑫. 面向主题的高质量评论挖掘模型研究[J]. 现代图书情报技术, 2015, 31(7-8): 104-112.
[8] 聂卉, 杜嘉忠. 依存句法模板下的商品特征标签抽取研究[J]. 现代图书情报技术, 2014, 30(12): 44-50.
[9] 孙霄凌, 赵宇翔, 朱庆华. 在线商品评论系统功能需求的Kano模型分析——以我国主要购物网站为例[J]. 现代图书情报技术, 2013, (6): 76-84.
[10] 李志宇. 在线商品评论效用排序模型研究[J]. 现代图书情报技术, 2013, (4): 62-68.
[11] 王永, 张勤, 杨晓洁. 中文网络评论中产品特征提取方法研究[J]. 现代图书情报技术, 2013, (12): 70-73.
[12] 张红斌, 李广丽. 商品在线评价的情感倾向性分析研究[J]. 现代图书情报技术, 2012, (10): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn