Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (3): 102-111    DOI: 10.11925/infotech.2096-3467.2018.0837
Current Issue | Archive | Adv Search |
Research on Impact of Commodity Online Evaluation for Consumption Convergence
Xiang Li,Xiaodong Qian()
School of Economics & Management, Lanzhou Jiaotong University, Lanzhou 730070, China
Download: PDF(1275 KB)   HTML ( 2
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper aims to explore the factors influencing consumer convergence in e-commerce. [Methods] Based on the BBV model, this paper optimized that model from the following two aspects in view of characteristics of the commodity-consumer binary network: selecting the nodes partially preferred and partially random and separately defining the weight distribution method of two types of nodes in the network during evolution. By comparing the evolution process and results of the model under different parameters, explored the impact of node weight, random factor and increase ratio of two types of nodes on consumer convergence. [Results] The evolution result proved that consumer convergence is influenced by node weight, random factor and increase ratio of two types of nodes. [Limitations] Only some typical parameters were selected, and the parameters lacked continuity. [Conclusions] Good initial online evaluation of product, high consumer rationality and low commodity market activity all contribute to a higher level of consumer convergence.

Key wordsComplex Network      Evolution      Online Evaluation      Convergence Consumption      Bipartite Weighted Network     
Received: 29 July 2018      Published: 17 April 2019

Cite this article:

Xiang Li,Xiaodong Qian. Research on Impact of Commodity Online Evaluation for Consumption Convergence. Data Analysis and Knowledge Discovery, 2019, 3(3): 102-111.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2018.0837     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2019/V3/I3/102

[1] 中国社会科学院财经战略研究院, 央视财经. 中国电子商务年报(2017)[EB/OL]. [2018-06-04]. .
[1] (National Academy of Economic Strategy, CCTV Finance and Economics. China Electronic Commerce Semi-Annual Report [EB/OL]. [2018-06-04].
[2] Aly M, Hatch A, Josifovski V, et al.Web-Scale User Modeling for Targeting[C]// Proceedings of the 21st International Conference on World Wide Web. ACM, 2012: 3-12.
[3] Aly M, Pandey S, Josifovski V, et al.Towards a Robust Modeling of Temporal Interest Change Patterns for Behavioral Targeting[C]// Proceedings of the 22nd International Conference on World Wide Web. ACM, 2013: 71-82.
[4] Zheng N, Jin X, Li L.Cross-Region Collaborative Filtering for New Point-of-Interest Recommendation[C]// Proceedings of the 22nd International Conference on World Wide Web. ACM, 2013: 45-46.
[5] Chu W, Choi B, Song M R.The Role of On-line Retailer Brand and Infomediary Reputation in Increasing Consumer Purchase Intention[J]. International Journal of Electronic Commerce, 2005, 9(3): 115-127.
[6] Aarts H, Dijksterhuis A.How Often Did I Do It? Experienced Ease of Retrieval and Frequency Estimates of Past Behavior[J]. Acta Psychologica, 1999, 103(1-2): 77-89.
[7] 周宏, 张皓, 劳沛基, 等.网络互动中的群体趋同效应及其影响机制[J]. 科技进步与对策, 2014, 31(13): 68-72.
[7] (Zhou Hong, Zhang Hao, Lao Peiji, et al.The Group Convergence Effect and Influence Mechanism in the Network Interaction[J]. Science & Technology Progress and Policy, 2014, 31(13): 68-72.)
[8] 李在军, 管卫华, 吴启焰, 等. 1978-2011年间中国区域消费水平的时空演变[J]. 地球信息科学学报, 2014, 16(5): 746-753.
[8] (Li Zaijun, Guan Weihua, Wu Qiyan, et al.The Temporal and Spatial Trend of China’s Regional Consumption Level Since the Reform and Opening up[J]. Journal of Geo-Information Science, 2014, 16(5): 746-753.)
[9] 蔺国伟, 白凯, 刘晓慧. 参照群体对中国消费者海外旅游购物趋同行为的影响[J]. 资源科学, 2015, 37(11): 2151-2161.
[9] (Lin Guowei, Bai Kai, Liu Xiaohui.The Influence of Reference Groups on the Conformity Behavior of Overseas Shopping by Chinese Tourists[J]. Resources Science, 2015, 37(11): 2151-2161.)
[10] 张晶. 趋同与差异:合法性机制下的消费转变——基于北京地区青年女性农民工消费的实证研究[J]. 中国青年研究, 2010(6): 58-63.
[10] (Zhang Jing.Convergence and Difference: Consumption Transformation Under Legitimacy Mechanism ——Based on the Empirical Study of Young Female Migrant Workers’ Consumption in Beijing[J]. China Youth Study, 2010(6): 58-63.)
[11] 齐飞. 旅游消费者行为: 后现代主义下的趋同与分化[J]. 旅游学刊, 2014, 29(7): 11-12.
[11] (Qi Fei.Tourism Consumer Behavior: Convergence and Differentiation Under Postmodernism[J]. Tourism Tribune, 2014, 29(7): 11-12.)
[12] Chen D N, Yang Y S, Ku Y C.A Trust Perspective to Study the Intentions of Consumers to the Group Buying[A]// E-Life: Web-Enabled Convergence of Commerce, Work, and Social Life[M]. Springer, 2011, 108: 153-166.
[13] 郝放, 庞隽, 刘晓梅. 不同类型的社会排斥对消费者形状偏好的影响机制[J]. 中国流通经济, 2018,32(8): 70-78.
[13] (Hao Fang, Pang Juan, Liu Xiaomei.The Effect of Different Types of Social Exclusion on Consumers’ Shape Preference[J]. China Business and Market, 2018, 32(8): 70-78.)
[14] Chen Y F.Herd Behavior in Purchasing Books Online[J]. Computers in Human Behavior, 2008, 24(5): 1977-1992.
[15] 吴坚, 符国群. 品牌来源国和产品制造国对消费者购买行为的影响[J]. 管理学报, 2007, 4(5): 593-601.
[15] (Wu Jian, Fu Guoqun.Effects of Brand-Originating Counties and Product-Made Counties on a Consumer’s Product Evaluation and Purchase Intension[J]. Chinese Journal of Management, 2007, 4(5): 593-601.)
[16] Oromendía A R, Paz M D R, Rufín R. Research Note: Relationship Versus Transactional Marketing in Travel and Tourism Trade Shows[J]. Tourism Economics, 2015, 21(2): 427-434.
[17] Barrat A, Bathelemy M, Vespignani A.Modeling the Evolution of Weighted Networks[J]. Physical Review E, 2004, 70(6): 1-12.
[18] Varela LM, Rotundo G, Ausloos M, et al.Complex Network Analysis in Socioeconomic Models[J]. Complexity and Geographical Economics, 2014, 19: 209-245.
[19] 王进良, 张鹏, 狄增如, 等. 北京师范大学图书借阅系统的网络分析[J]. 情报学报, 2009, 28(1): 137-141.
[19] (Wang Jinliang, Zhang Peng, Di Zengru, et al.Network Analysis Based on Loan System of Library of Beijing Normal University[J]. Journal of the China Society for Scientific and Technical Information, 2009, 28(1): 137-141.)
[20] Latapy M, Magnien C, Vecchio N D.Basic Notions for the Analysis of Large Two Mode Networks[J]. Social Networks, 2008, 30(1): 31-48.
[21] Erdös P, Rényi A.On Random Graphs I[J]. Publicationes Mathematicae Debrecen, 1959, 9: 290-297.
[22] Barabasi A L, Albert R.Emergence of Scaling in Random Networks[J]. Science, 1999, 286(5439): 509-512.
[23] 维弗雷多·帕累托. 无处不在的80/20[M]. 郑麟译. 第1版. 北京: 机械工业出版社, 2003: 45-55.
[23] (Pareto V.The Ubiquitous Twenty-Eight Law[M]. Translated by Zheng Lin. The 1st Edition. Beijing: Mechanical Industry Press, 2003: 45-55.)
[24] User Behavior Data on Taobao/Tmall IJCAI16[DS/OL]. [2018-04-02].
[1] Peng Guan,Yuefen Wang,Zhu Fu. Analyzing Topic Semantic Evolution with LDA: Case Study of Lithium Ion Batteries[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[2] Jianhua Liu,Zhixiong Zhang,Qin Zhang. Revealing Sci-Tech Policy Evolution with Entity Relationship[J]. 数据分析与知识发现, 2019, 3(5): 57-67.
[3] Guang Zhu,Hu Liu,Xinmeng Du. Health APPs and Privacy Concerns: A Three-Entities Game-theoretic Approach[J]. 数据分析与知识发现, 2019, 3(5): 93-106.
[4] Jiang Wu,Guanjun Liu,Xian Hu. An Overview of Online Medical and Health Research: Hot Topics, Theme Evolution and Research Content[J]. 数据分析与知识发现, 2019, 3(4): 2-12.
[5] Lu An,Yanping Liang. Selection of Users’ Behaviors Towards Different Topics of Microblog on Public Health Emergencies[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[6] Lin Wang,Ke Wang,Jiang Wu. Public Opinion Propagation and Evolution of Public Health Emergencies in Social Media Era: A Case Study of 2018 Vaccine Event[J]. 数据分析与知识发现, 2019, 3(4): 42-52.
[7] Peiyao Zhang,Dongsu Liu. Topic Evolutionary Analysis of Short Text Based on Word Vector and BTM[J]. 数据分析与知识发现, 2019, 3(3): 95-101.
[8] Hongqinling Wang,Zhichao Ba,Gang Li. Conversational Topic Intensity Calculation and Evolution Analysis of WeChat Group[J]. 数据分析与知识发现, 2019, 3(2): 33-42.
[9] Yuemei Xu,Sining Lv,Lianqiao Cai,Xiaoya Zhang. Analyzing News Topic Evolution with Convolutional Neural Networks and Topic2Vec[J]. 数据分析与知识发现, 2018, 2(9): 31-41.
[10] Chuanming Yu,Yajing Guo,Yutian Gong,Manyu Huang,Hufeng Peng. Evolution and Regional Differences of E-commerce Policies for Rural Poverty Reduction Based on Topic over Time Model[J]. 数据分析与知识发现, 2018, 2(7): 34-45.
[11] Guang Zhu,Mining Feng,Weiwei Zhang. Incentive Investments on Information Security for Libraries: An Evolutionary Game-theory Approach[J]. 数据分析与知识发现, 2018, 2(6): 13-24.
[12] Xiaodong Qian,Min Li. Identifying E-commerce User Types Based on Complex Network Overlapping Community[J]. 数据分析与知识发现, 2018, 2(6): 79-91.
[13] Jingqi Wang,Rui Li,Huayi Wu. The Evolution of Online Public Opinion Based on Spatial Autocorrelation[J]. 数据分析与知识发现, 2018, 2(2): 64-73.
[14] Weilin He,Guohe Feng,Hongling Xie. Analyzing Scientific Literature with Content Similarity - Topics over Time Model[J]. 数据分析与知识发现, 2018, 2(11): 64-72.
[15] Yunwei Chen,Ruihong Zhang. Comparing on Community Detection Algorithms for Information Mining[J]. 数据分析与知识发现, 2018, 2(10): 84-94.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn