Please wait a minute...
Advanced Search
数据分析与知识发现  2024, Vol. 8 Issue (4): 137-151     https://doi.org/10.11925/infotech.2096-3467.2023.0217
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于空间-邻域自适应的图卷积神经网络信贷欺诈检测模型*
张岚泽1,赵晓亮1(),刘津彤2,顾益军1
1中国人民公安大学信息网络安全学院 北京 100038
2北京市朝阳区人民法院 北京 100021
A Graph Convolutional Credit Fraud Detection Model with Spatial-Neighborhood Adaptability
Zhang Lanze1,Zhao Xiaoliang1(),Liu Jintong2,Gu Yijun1
1Department of Information and Network Security, People’s Public Security University of China, Beijing 100038, China
2Beijing Chaoyang District People’s Court, Beijing 100021, China
全文: PDF (1503 KB)   HTML ( 6
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 为信贷欺诈检测提供兼具空间和邻域自适应性的图卷积神经网络模型。【方法】 提出双曲跳跃图卷积神经网络。在空间自适应方面,将节点属性表示为双曲空间可训练曲率,从而完成欺诈网络的低失真嵌入表示;在邻域自适应方面,定义双曲跳跃连接框架(HJK-Net)框架,通过双曲层间聚合机制对邻域表示结果进行融合。从而为关系网络提供融合空间和邻域自适应性的图表示学习结果,进而完成信贷欺诈检测任务。【结果】 通过在公开且来源于实际业务场景的大型社交网络中部署实验,所提模型的AUC指标达到0.833 5,相比于以GraphSAGE(NS)为代表的基线模型提升0.059 4。【局限】 浅层社交网络对邻域自适应性的优势略有限制,所提模型在大型复杂深度网络结构中优势更加明显。【结论】 空间自适应为节点属性相关性提供更准确描述,邻域自适应为图表示学习选择最优的邻域聚合范围;融合空间和邻域自适应的模型在大型欺诈关系网中具备更好的识别效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张岚泽
赵晓亮
刘津彤
顾益军
关键词 图卷积神经网络图表示学习双曲空间空间-邻域自适应性信贷欺诈检测    
Abstract

[Objective] This paper provides a graph convolutional neural network model with spatial and neighborhood adaptability for credit fraud detection. [Methods] We proposed a Hyperbolic Jumping Connection Graph Convolutional Neural Networks. Regarding spatial adaptability, we represented the node attributes as a trainable curvature in hyperbolic space and completed the low-distortion embedding representation of the fraudulent network. In terms of neighborhood adaptability, we defined a Hyperbolic Jumping Knowledge Networks framework and fused the neighborhood representation results through the hyperbolic inter-layer aggregation mechanism. As a result, we provided the relational network with a graph representation learning result integrating spatial and neighborhood adaptability. Finally, we completed the task of credit fraud detection. [Results] By deploying experiments in a large-scale social network that is publicly available and comes from real business scenarios, the proposed model achieved an AUC of 0.835 5, which was 0.059 4 higher than the baseline model represented by GraphSAGE(NS). [Limitations] The advantages of shallow social networks on neighborhood adaptability are slightly limited, and the advantages of our model are more evident in large-scale complex deep network structures. [Conclusions] Spatial adaptation provides a more accurate description of node attribute correlations, and neighborhood adaptation selects the optimal neighborhood aggregation range for graph representation learning. The proposed model has a better identification effect in large-scale fraud relationship networks.

Key wordsGraph Convolutional Neural Networks    Graph Representation Learning    Hyperbolic Space    Spatial and Neighborhood Adaptability    Credit Fraud Detection
收稿日期: 2023-03-16      出版日期: 2024-01-08
ZTFLH:  TP393  
  G250  
基金资助:* 中国人民公安大学基本科研业务费项目(2021JKF420)
通讯作者: 赵晓亮,E-mail: zhaoxiaoliang@ppsuc.edu.cn。   
引用本文:   
张岚泽, 赵晓亮, 刘津彤, 顾益军. 基于空间-邻域自适应的图卷积神经网络信贷欺诈检测模型*[J]. 数据分析与知识发现, 2024, 8(4): 137-151.
Zhang Lanze, Zhao Xiaoliang, Liu Jintong, Gu Yijun. A Graph Convolutional Credit Fraud Detection Model with Spatial-Neighborhood Adaptability. Data Analysis and Knowledge Discovery, 2024, 8(4): 137-151.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2023.0217      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2024/V8/I4/137
Fig.1  节点位置与感受野
Fig.2  欧式空间图嵌入失真
Fig.3  双曲跳跃图卷积神经网络
Fig.4  双曲聚合运算
Fig.5  HJK-Net框架
Fig.6  图属性描述
Fig.7  NeighborSampler取样模式
Fig.8  逐层信息聚合
模型 AUC Precision(宏平均) Recall(宏平均) F1(宏平均)
MLP 0.719 2 0.508 9 0.657 2 0.573 6
GCN 0.707 8 0.510 0 0.646 9 0.570 3
GAT(NS) 0.733 3 0.511 2 0.613 9 0.557 9
GraphSAGE 0.762 1 0.511 6 0.680 4 0.584 1
GraphSAGE(NS) 0.776 1 0.513 2 0.638 5 0.569 0
JK-GCN-Max 0.779 1 0.512 2 0.703 8 0.592 9
HGCN 0.779 8 0.512 1 0.708 3 0.594 4
HJ-GCN-Concat 0.832 8 0.515 8 0.763 2 0.615 6
HJ-GCN-Maxpooling 0.835 5 0.516 6 0.767 7 0.617 6
Table 1  模型性能对比
消融模块 AUC Precision Recall F1
UCA-Concat 0.820 2 0.516 4 0.747 1 0.610 7
UCA-Maxpooling 0.819 5 0.514 1 0.749 4 0.609 9
UNA 0.819 8 0.514 6 0.746 6 0.609 4
UHA-Concat 0.812 8 0.513 6 0.741 4 0.592 6
UHA-Maxpooling 0.816 2 0.515 0 0.747 8 0.609 9
UBI-Concat 0.792 4 0.513 1 0.728 5 0.602 1
UBI-Maxpooling 0.790 2 0.512 4 0.724 2 0.600 2
HJ-GCN-Concat 0.832 8 0.515 8 0.763 2 0.615 6
HJ-GCN-Maxpooling 0.835 5 0.516 6 0.767 7 0.617 6
Table 2  消融实验结果对比
K HConcat AUC/% HMaxpooling AUC /% 子图节点规模
NS 81.97 81.72 batch 256
1~2 82.96±0.05 83.14±0.06 6.95万~16.30万
3~5 83.28±0.04 83.55±0.05 29.06万~64.54万
Table 3  K-Hop结果对比
[1] 郑冲. 信贷业务欺诈风险管理研究[J]. 北方金融, 2016 (6): 44-47.
[1] (Zheng Chong. Research on Fraud Risk Management in Credit Business[J]. Northern Finance Journal, 2016(6): 44-47.)
[2] 原佳琪. 基于机器学习的消费金融贷前风险控制研究[D]. 重庆: 重庆大学, 2021.
[2] (Yuan Jiaqi. Research on Pre-Loan Risk Control of Consumer Finance Based on Machine Learning[D]. Chongqing: Chongqing University, 2021.)
[3] 陈卓, 朱淼, 杜军威. 基于多视角图神经网络的欺诈检测算法[J]. 通信学报, 2022, 43(11): 225-232.
doi: 10.11959/j.issn.1000-436x.2022221
[3] (Chen Zhuo, Zhu Miao, Du Junwei. Multi-View Graph Neural Network for Fraud Detection Algorithm[J]. Journal on Communications, 2022, 43(11): 225-232.)
doi: 10.11959/j.issn.1000-436x.2022221
[4] Zareapoor M, Shamsolmoali P. Application of Credit Card Fraud Detection: Based on Bagging Ensemble Classifier[J]. Procedia Computer Science, 2015, 48: 679-685.
[5] Carcillo F, le Borgne Y A, Caelen O, et al. Combining Unsupervised and Supervised Learning in Credit Card Fraud Detection[J]. Information Sciences, 2021, 557: 317-331.
[6] 段福先. 基于异构图神经网络的欺诈检测研究[D]. 南昌: 华东交通大学, 2022.
[6] (Duan Fuxian. Research on Fraud Detection Based on Heterogeneous Graph Neural Network[D]. Nanchang: East China Jiaotong University, 2022.)
[7] Kipf T N, Welling M. Semi-supervised Classification with Graph Convolutional Networks[OL]. arXiv Preprint, arXiv:1609.02907.
[8] Veličković P, Cucurull G, Casanova A, et al. Graph Attention Networks[OL]. arXiv Preprint, arXiv: 1710.10903.
[9] Hamilton W L, Ying R, Leskovec J. Inductive Representation Learning on Large Graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 1025-1035.
[10] Liu Z Q, Chen C C, Yang X X, et al. Heterogeneous Graph Neural Networks for Malicious Account Detection[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018: 2077-2085.
[11] Wang D X, Lin J B, Cui P, et al. A Semi-supervised Graph Attentive Network for Financial Fraud Detection[C]// Proceedings of 2019 IEEE International Conference on Data Mining. 2019: 598-607.
[12] Dou Y T, Liu Z W, Sun L, et al. Enhancing Graph Neural Network-Based Fraud Detectors Against Camouflaged Fraudsters[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020: 315-324.
[13] 王本钰, 顾益军, 彭舒凡. 融合节点属性和无环路径的社交网络嵌入方法[J]. 计算机科学与探索, 2022, 16(11): 2505-2518.
doi: 10.3778/j.issn.1673-9418.2104075
[13] (Wang Benyu, Gu Yijun, Peng Shufan. Social Network Embedding Method Combining Node Attributes and Loop-Free Path[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2505-2518.)
doi: 10.3778/j.issn.1673-9418.2104075
[14] Xu K, Li C T, Tian Y H, et al. Representation Learning on Graphs with Jumping Knowledge Networks[C]// Proceedings of the 35th International Conference on Machine Learning. 2018: 5453-5462.
[15] 王强, 江昊, 羿舒文, 等. 复杂网络的双曲空间表征学习方法[J]. 软件学报, 2021, 32(1): 93-117.
[15] (Wang Qiang, Jiang Hao, Yi Shuwen, et al. Hyperbolic Representation Learning for Complex Networks[J]. Journal of Software, 2021, 32(1): 93-117.)
[16] Bachmann G, Bécigneul G, Ganea O E. Constant Curvature Graph Convolutional Networks[C]// Proceedings of the 37th International Conference on Machine Learning. 2020: 486-496.
[17] Krioukov D, Papadopoulos F, Kitsak M, et al. Hyperbolic Geometry of Complex Networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(3Pt2): 036106.
[18] Fu X C, Li J X, Wu J, et al. ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network[C]// Proceedings of the 2021 IEEE International Conference on Data Mining. 2021: 111-120.
[19] Zhang Y D, Wang X, Shi C, et al. Hyperbolic Graph Attention Network[J]. IEEE Transactions on Big Data, 2021, 8(6): 1690-1701.
[20] Chami I, Ying Z, Ré C, et al. Hyperbolic Graph Convolutional Neural Networks[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019: 4868-4879.
[21] Liu Q, Nickel M, Kiela D. Hyperbolic Graph Neural Networks[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019: 8230-8241.
[22] Peng W, Varanka T, Mostafa A, et al. Hyperbolic Deep Neural Networks: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 10023-10044.
[23] Vermeer J. A Geometric Interpretation of Ungar’s Addition and of Gyration in the Hyperbolic Plane[J]. Topology and its Applications, 2005, 152(3): 226-242.
[24] Yang M L, Zhou M, Li Z H, et al. Hyperbolic Graph Neural Networks: A Review of Methods and Applications[OL]. arXiv Preprint, arXiv:2202.13852.
[25] Huang X W, Yang Y, Wang Y, et al. DGraph: A Large-Scale Financial Dataset for Graph Anomaly Detection[C]// Proceedings of the 36th Conference on Neural Information Processing Systems. 2022.
[26] Huang X W, Yang Y, Wang Y, et al. DGraph-Fin: Dynamic Social Network in Finance[DS/OL].(2022-04-12).[2023-05-12]. https://dgraph.xinye.com.
[27] Taud H, Mas J F. Multilayer Perceptron (MLP)[M]//Geomatic Approaches for Modeling Land Change Scenarios. Cham: Springer, 2018: 451-455.
[28] Luan S, Hua C Q, Lu Q C, et al. Revisiting Heterophily for Graph Neural Networks[C]// Proceedings of 36th Conference on Neural Information Processing Systems. 2022.
[29] Pei H B, Wei B Z, Chang K C C, et al. Geom-GCN: Geometric Graph Convolutional Networks[OL]. arXiv Preprint, arXiv: 2002.05287.
[1] 吴越, 孙海春. 基于图神经网络的知识图谱补全研究综述*[J]. 数据分析与知识发现, 2024, 8(3): 10-28.
[2] 曹琨, 吴新年, 靳军宝, 郑玉荣, 付爽. 基于共词和Node2Vec表示学习的新兴技术识别方法*[J]. 数据分析与知识发现, 2023, 7(9): 89-99.
[3] 魏建香, 陆谦, 韩普, 黄卫东. 基于多语义信息融合的事件检测模型*[J]. 数据分析与知识发现, 2023, 7(12): 64-74.
[4] 余本功, 季晓晗. 基于ADGCN-MFM的多模态讽刺检测研究*[J]. 数据分析与知识发现, 2023, 7(10): 85-94.
[5] 郭樊容, 黄孝喜, 王荣波, 谌志群, 胡创, 谢一敏, 司博宇. 基于Transformer和图卷积神经网络的隐喻识别*[J]. 数据分析与知识发现, 2022, 6(4): 120-129.
[6] 范涛,王昊,吴鹏. 基于图卷积神经网络和依存句法分析的网民负面情感分析研究*[J]. 数据分析与知识发现, 2021, 5(9): 97-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn