Please wait a minute...
Advanced Search
数据分析与知识发现  2024, Vol. 8 Issue (4): 1-13     https://doi.org/10.11925/infotech.2096-3467.2023.0684
  专题 本期目录 | 过刊浏览 | 高级检索 |
以可解释工具重探基于深度学习的谣言检测*
贺国秀(),任佳渝,李宗耀,林晨曦,蔚海燕
华东师范大学经济与管理学院 上海 200062
Revisiting Deep Learning-based Rumor Detection Models with Interpretable Tools
He Guoxiu(),Ren Jiayu,Li Zongyao,Lin Chenxi,Yu Haiyan
Faculty of Economics and Management, East China Normal University, Shanghai 200062, China
全文: PDF (1354 KB)   HTML ( 9
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 探究基于内容的深度谣言检测模型能否真正识别谣言的关键语义。【方法】 基于谣言检测任务的中英文基准数据集,本文分别利用基于局部代理模型的可解释工具LIME和基于合作博弈论的可解释工具SHAP,分析BERT模型所识别出的关键特征,并判断其是否能反映谣言特性。【结果】 可解释工具在不同模型与数据集上计算得出的关键特征差异性较大,无法辨别模型识别的重要特征和谣言之间的语义关系。【局限】 本文验证的数据集和模型数量都十分有限。【结论】 基于深度学习的谣言检测模型仅拟合了训练集的特征,面向多样的真实场景缺少足够的泛化性和可解释性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺国秀
任佳渝
李宗耀
林晨曦
蔚海燕
关键词 谣言检测可解释机器学习深度学习LIMESHAP    
Abstract

[Objective] This study explores whether content-based deep detection models can identify the semantics of rumors. [Methods] First, we use the BERT model to identify the key features of rumors from benchmark datasets in Chinese and English. Then, we utilized two interpretable tools, LIME, based on local surrogate models, and SHAP, based on cooperative game theory, to analyze whether these features can reflect the nature of rumors. [Results] The key features calculated by the interpretable tools on different models and datasets showed significant differences, and it is challenging to decide the semantic relationship between the features and rumors. [Limitations] The datasets and models examined in this study need to be expanded. [Conclusion] Deep learning-based rumor detection models only work with the features of the training set and lack sufficient generalization and interpretability for diverse real-world scenarios.

Key wordsRumor Detection    Interpretable Machine Learning    Deep Learning    LIME    SHAP
收稿日期: 2023-07-31      出版日期: 2024-04-18
ZTFLH:  TP393  
  G35  
基金资助:* 国家自然科学基金项目(72204087);上海市哲学社会科学规划青年课题(2022ETQ001);中央高校基本科研业务费专项资金资助项目
通讯作者: 贺国秀,ORCID: 0000-0002-1419-7495, E-mail: gxhe@fem.ecnu.edu.cn。   
引用本文:   
贺国秀, 任佳渝, 李宗耀, 林晨曦, 蔚海燕. 以可解释工具重探基于深度学习的谣言检测*[J]. 数据分析与知识发现, 2024, 8(4): 1-13.
He Guoxiu, Ren Jiayu, Li Zongyao, Lin Chenxi, Yu Haiyan. Revisiting Deep Learning-based Rumor Detection Models with Interpretable Tools. Data Analysis and Knowledge Discovery, 2024, 8(4): 1-13.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2023.0684      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2024/V8/I4/1
Fig.1  研究框架
Fig.2  SHAP示意图
实际为谣言 实际为非谣言
预测为谣言 TN FN
预测为非谣言 FP TP
Table 1  混淆矩阵
模型 Ma_weibo(%) Twitter15/16(%)
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
机器学习模型 TF-IDF+SVM 87.14 86.52 88.00 87.25 84.25 89.21 82.12 87.25
TF-IDF+LR 85.28 84.02 87.14 85.53 83.23 89.36 88.34 89.14
TF-IDF+GBDT 71.71 72.89 69.14 70.97 80.65 78.24 70.12 68.63
TF-IDF+RF 81.57 84.42 77.43 80.77 82.08 80.12 80.58 80.43
深度学习模型 MLP 88.00 87.78 88.28 88.03 88.44 89.13 88.65 89.13
CNN 87.86 89.31 86.00 87.62 82.08 75.63 83.12 85.31
RNN 85.28 87.08 82.85 84.92 71.68 70.09 72.36 75.38
LSTM 86.29 86.71 85.71 86.20 63.01 70.59 65.10 60.00
DPCNN 84.14 85.25 82.57 83.89 63.31 70.48 68.33 59.95
Self-Attention 86.14 88.69 82.86 85.67 62.8 70.34 66.25 69.34
BiLSTM-Attention 86.43 88.06 84.29 86.13 63.34 69.68 66.89 60.88
Transformer 86.57 87.21 85.71 86.46 62.99 71.18 60.44 60.46
BERT 92.00 89.30 95.43 92.65 88.93 89.44 88.79 89.27
Table 2  谣言检测模型在测试集上的实验结果
模型 谣言Top 15 非谣言Top 15
TF-IDF+SVM 超话, 鸡蛋, 肉松, 疫情, 最后, 大家, 孩子, 事件,
去世, 棉花, 少年, 不要, 山竹, 塑料袋, 只有
全文, 医院, 人民, 死亡, 网传, 北京, 视频, 还是, 上海,
可怕, 下来, 乔任梁, 女子, 里面, 转发
BERT 取消, 恐惧, 火车站, 车子, 尼姑, 升空, 据说, 民警,
江中, 打响, 哈尔滨, 打工, 印度, 燃烧, 禽兽
转正, 没事, 也门, 政治, 秦始皇, 哈萨克斯坦, 没什么,
交换, 离不开, 皇后, 仿佛, 道歉, 溥仪, 苦恼, 耐心
Table 3  中文数据集关键特征
模型 谣言Top 15 非谣言Top 15
TF-IDF+SVM putin, bi, soviet, protesters, amazon, potentially, soldier, atheist, town, worker, blasts, fatally, brown, obama, officers boxed, which, snow, cutting, corporal, tell, building, fallen, seen, hailed, ottawa, appearance, mar, walker, killing
BERT hailed, walks, google, asshole, tesla, discover, millions, opposes, for, false, locked, cannot, informed, starbucks, whether soviet, protesters, amazon, potentially, blasts, penis, taliban, yourselves, boycott, employees, banks, already, disney, hacker, boo
Table 4  英文数据集关键特征
Fig.3  基于SHAP的微博数据集个案分析
Fig.4  基于LIME的微博数据集个案分析
Fig.5  基于SHAP的Twitter数据集个案分析
Fig.6  基于LIME的Twitter数据集个案分析
[1] 李宗建, 程竹汝. 新媒体时代舆论引导的挑战与对策[J]. 上海行政学院学报, 2016, 17(5): 76-85.
[1] (Li Zongjian, Cheng Zhuru. Challenges and Countermeasures of Public Opinion Guidance in the New Media Time[J]. The Journal of Shanghai Administration Institute, 2016, 17(5): 76-85.)
[2] 李露琪, 侯丽, 邓胜利. 突发公共卫生事件网络虚假信息传播行为影响因素研究——以新冠疫情期间微博虚假信息为例[J]. 图书情报工作, 2022, 66(9): 4-13.
doi: 10.13266/j.issn.0252-3116.2022.09.001
[2] (Li Luqi, Hou Li, Deng Shengli. Research on Influencing Factors of Network Misinformation Transmission Behaviors in Public Health Emergencies: A Case Study of Weibo Misinformation During the COVID-19[J]. Library and Information Service, 2022, 66(9): 4-13.)
doi: 10.13266/j.issn.0252-3116.2022.09.001
[3] 黄学坚, 马廷淮, 王根生. 基于分层语义特征学习模型的微博谣言事件检测[J]. 数据分析与知识发现, 2023, 7(5): 81-91.
[3] (Huang Xuejian, Ma Tinghuai, Wang Gensheng. Detecting Weibo Rumors Based on Hierarchical Semantic Feature Learning Model[J]. Data Analysis and Knowledge Discovery, 2023, 7(5): 81-91.)
[4] Castillo C, Mendoza M, Poblete B. Predicting Information Credibility in Time-Sensitive Social Media[J]. Internet Research, 2013, 23(5): 560-588.
[5] Shu K, Zhou X Y, Wang S H, et al. The Role of User Profiles for Fake News Detection[C]// Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: ACM, 2019: 436-439.
[6] 祖坤琳, 赵铭伟, 郭凯, 等. 新浪微博谣言检测研究[J]. 中文信息学报, 2017, 31(3): 198-204.
[6] (Zu Kunlin, Zhao Mingwei, Guo Kai, et al. Research on the Detection of Rumor on Sina Weibo[J]. Journal of Chinese Information Processing, 2017, 31(3): 198-204.)
[7] Ma J, Gao W, Wong K F. Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 708-717.
[8] Shen S S, Lee H Y. Neural Attention Models for Sequence Classification: Analysis and Application to Key Term Extraction and Dialogue Act Detection[C]// Proceedings of the 17th Annual Conference of the International Speech Communication Association. San Francisco: ISCA, 2016: 2716-2720.
[9] Bian T, Xiao X, Xu T Y, et al. Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 549-556.
[10] Anggrainingsih R, Hassan G M, Datta A. BERT Based Classification System for Detecting Rumours on Twitter[OL]. arXiv Preprint, arXiv:2109.02975.
[11] Zhong W J, Xu J J, Tang D Y, et al. Reasoning over Semantic-Level Graph for Fact Checking[OL]. arXiv Preprint, arXiv:1909.03745.
[12] Kim B, Doshi-Velez F. Interpretable Machine Learning: The Fuss, the Concrete and the Questions[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: ACM, 2017: 1-13.
[13] Miller T. Explanation in Artificial Intelligence: Insights from the Social Sciences[J]. Artificial Intelligence, 2019, 267: 1-38.
doi: 10.1016/j.artint.2018.07.007
[14] Ribeiro M T, Singh S, Guestrin C. ” Explaining the Predictions of Any Classifier[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1135-1144.
[15] Ribeiro M T, Singh S, Guestrin C. Anchors: High-Precision Model-Agnostic Explanations[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2018: 1527-1535.
[16] Selvaraju R R, Cogswell M, Das A, et al. Grad-Cam: Visual Explanations from Deep Networks via Gradient-based Localization[C]// Proceedings of the 16th IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 618-626.
[17] Bau D, Zhou B L, Khosla A, et al. Network Dissection: Quantifying Interpretability of Deep Visual Representations[C]// Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3319-3327.
[18] Montavon G, Lapuschkin S, Binder A, et al. Explaining Nonlinear Classification Decisions with Deep Taylor Decomposition[J]. Pattern Recognition, 2017, 65: 211-222.
[19] Lundberg S M, Lee S I. A Unified Approach to Interpreting Model Predictions[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 4768-4777.
[20] Shrikumar A, Greenside P, Kundaje A. Learning Important Features through Propagating Activation Differences[C]// Proceedings of the 34th International Conference on Machine Learning. New York: ACM, 2017: 3145-3153.
[21] 刘天畅, 王雷, 朱庆华. 基于SHAP解释方法的智慧养老服务平台用户流失预测研究[J]. 数据分析与知识发现, 2024, 8(1): 40-54.
[21] (Liu Tianchang, Wang Lei, Zhu Qinghua. Predicting User Churn of Smart Home-Based Care Services Based on SHAP Interpretation[J]. Data Analysis and Knowledge Discovery, 2024, 8(1): 40-54.)
[22] 易明, 姚玉佳, 胡敏. 融合XGBoost与SHAP的政务新媒体公共价值共识可解释性模型——以“今日头条”十大市级政务号为例[J]. 图书情报工作, 2022, 66(16): 36-47.
doi: 10.13266/j.issn.0252-3116.2022.16.004
[22] (Yi Ming, Yao Yujia, Hu Min. An Interpretable Model for New Government Media Public Value Consensus Integrating XGBoost and SHAP: Taking the Top 10 Municipal Government Accounts of the Jinri Toutiao as an Example[J]. Library and Information Service, 2022, 66(16): 36-47.)
doi: 10.13266/j.issn.0252-3116.2022.16.004
[23] 曾子明, 张瑜, 李婷婷. 多特征融合的突发公共卫生事件潜在谣言传播者识别[J]. 图书情报工作, 2022, 66(13): 80-90.
doi: 10.13266/j.issn.0252-3116.2022.13.008
[23] (Zeng Ziming, Zhang Yu, Li Tingting. Detection of Potential Rumor Spreaders in Public Health Emergencies Based on Multi-Feature Fusion[J]. Library and Information Service, 2022, 66(13): 80-90.)
doi: 10.13266/j.issn.0252-3116.2022.13.008
[24] Ayoub J, Yang X J, Zhou F. Combat COVID-19 Infodemic Using Explainable Natural Language Processing Models[J]. Information Processing & Management, 2021, 58(4): 102569.
[25] Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint, arXiv: 1301.3781.
[26] 李慧, 柴亚青. 基于属性特征的评论文本情感极性量化分析[J]. 数据分析与知识发现, 2017, 1(10): 1-11.
[26] (Li Hui, Chai Yaqing. Analyzing Sentiment Polarity of Comments Based on Attributes[J]. Data Analysis and Knowledge Discovery, 2017, 1(10): 1-11.)
[27] Devlin J, Chang M W, Lee K, et al. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2019: 4171-4186.
[28] Rumelhart D E, Hinton G E, Williams R J. Learning Representations by Back-Propagating Errors[J]. Nature, 1986, 323(6088): 533-536.
[29] 苏剑林. 提速不掉点:基于词颗粒度的中文WoBERT[EB/OL]. [2020-9-18] https://kexue.fm/archives/7758
[29] (Jianlin Su. WoBERT: Word-based Chinese BERT model[EB/OL]. [2020-9-18] https://kexue.fm/archives/7758)
[30] Chen Y H. Convolutional Neural Network for Sentence Classification[D]. Waterloo: University of Waterloo, 2015.
[31] Johnson R, Zhang T. Deep Pyramid Convolutional Neural Networks for Text Categorization[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2017: 562-570.
[32] Schuster M, Paliwal K K. Bidirectional Recurrent Neural Networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681.
[33] Vosoughi S, Roy D, Aral S. The Spread of True and False News Online[J]. Science, 2018, 359: 1146-1151.
doi: 10.1126/science.aap9559 pmid: 29590045
[34] Solovev K, Pröllochs N. Moral Emotions Shape the Virality of COVID-19 Misinformation on Social Media[C]// Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 3706-3717.
[35] Liu X M, Nourbakhsh A, Li Q Z, et al. Real-Time Rumor Debunking on Twitter[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM, 2015: 1867-1870.
[36] Ma J, Gao W, Wei Z Y, et al. Detect Rumors Using Time Series of Social Context Information on Microblogging Websites[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM, 2015: 1751-1754.
[1] 凤丽洲,刘馥榕,王友卫. 基于图卷积网络和注意力机制的谣言检测方法*[J]. 数据分析与知识发现, 2024, 8(4): 125-136.
[2] 马志远,高颖,张强,周洪,李兵,陶皖. 融合语义与结构信息的知识图谱补全模型研究*[J]. 数据分析与知识发现, 2024, 8(4): 39-49.
[3] 阮光册,钟静涵,张祎笛. 基于深度学习的术语识别研究综述[J]. 数据分析与知识发现, 2024, 8(4): 64-75.
[4] 张志剑, 夏苏迪, 刘政昊. 融合多特征深度学习的印章识别及应用研究*[J]. 数据分析与知识发现, 2024, 8(3): 143-155.
[5] 聂卉, 吴晓燕. 结合梯度提升树算法与可解释机器学习模型SHAP的抑郁症影响因素研究*[J]. 数据分析与知识发现, 2024, 8(3): 41-52.
[6] 张雄涛, 祝娜, 郭玉慧. 基于图神经网络的会话推荐方法综述*[J]. 数据分析与知识发现, 2024, 8(2): 1-16.
[7] 李慧, 胡耀华, 徐存真. 考虑评论情感表达力及其重要性的个性化推荐算法*[J]. 数据分析与知识发现, 2024, 8(1): 69-79.
[8] 刘智锋, 王继民. 可解释机器学习在信息资源管理领域的应用研究综述*[J]. 数据分析与知识发现, 2024, 8(1): 16-29.
[9] 刘天畅, 王雷, 朱庆华. 基于SHAP解释方法的智慧居家养老服务平台用户流失预测研究*[J]. 数据分析与知识发现, 2024, 8(1): 40-54.
[10] 向卓元, 陈浩, 王倩, 李娜. 面向任务型对话的小样本语言理解模型研究*[J]. 数据分析与知识发现, 2023, 7(9): 64-77.
[11] 聂卉, 蔡瑞昇. 引入注意力机制的在线问诊推荐研究*[J]. 数据分析与知识发现, 2023, 7(8): 138-148.
[12] 李广建, 袁钺. 基于深度学习的科技文献知识单元抽取研究综述[J]. 数据分析与知识发现, 2023, 7(7): 1-17.
[13] 王楠, 王淇. 基于深度学习的学生课堂专注度测评方法*[J]. 数据分析与知识发现, 2023, 7(6): 123-133.
[14] 汪晓凤, 孙雨洁, 王华珍, 张恒彰. 融合深度学习和知识图谱的类型可控问句生成模型构建及验证*[J]. 数据分析与知识发现, 2023, 7(6): 26-37.
[15] 吴佳伦, 张若楠, 康武林, 袁普卫. 基于患者相似性分析的药物推荐深度学习模型研究*[J]. 数据分析与知识发现, 2023, 7(6): 148-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn