Please wait a minute...
Advanced Search
数据分析与知识发现  2024, Vol. 8 Issue (3): 10-28     https://doi.org/10.11925/infotech.2096-3467.2023.0753
  综述评介 本期目录 | 过刊浏览 | 高级检索 |
基于图神经网络的知识图谱补全研究综述*
吴越1,孙海春1,2()
1中国人民公安大学信息网络安全学院 北京 100038
2安全防范技术与风险评估公安部重点实验室 北京 100026
An Overview of Research on Knowledge Graph Completion Based on Graph Neural Network
Wu Yue1,Sun Haichun1,2()
1School of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, China
2Key Laboratory of Security Technology & Risk Assessment, Beijing 100026, China
全文: PDF (1658 KB)   HTML ( 11
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】通过调研和梳理文献,总结基于图神经网络的知识图谱补全方法。【文献范围】以“Knowledge Graph Completion”、“知识图谱补全”作为检索词在Web of Science、DBLP和CNKI数据库中进行检索,共筛选出79篇文献。【方法】分别归纳总结图卷积神经网络、图注意力网络、图自动编码网络三种基于图神经网络的知识图谱补全方法类别,并对每种类别的技术脉络、典型方法、模型框架优缺点等进行对比论述。【结果】运用知识图谱补全任务的常用数据集和评价指标,从MRR、MR、Hit@k等性能评价角度对各类模型的效果进行对比分析,并对未来研究提出展望。【局限】在实验结果对比中,只讨论了FB15K-237和WN18RR数据集上部分应用较广的模型的评估结果,缺乏全部模型在同一数据集上的对比。【结论】相比基于表示学习模型和基于神经网络模型,基于图神经网络模型具有更好的图谱补全性能,但模型关系复杂性高、过平滑、可扩展性通用性差,这也是未来研究要解决的问题。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴越
孙海春
关键词 知识图谱补全图神经网络图卷积神经网络图注意力网络图自动编码网络    
Abstract

[Objective] This paper summarizes the knowledge graph completion methods based on graph neural network through research and literature review. [Coverage] With “knowledge graph completion” as search terms to retrieve literature from the Web of Science, DBLP and CNKI, a total of 79 representative literature were screened out for review. [Methods] Based on the model structure, three knowledge graph completion methods based on graph neural networks were summarized, including graph convolutional neural networks, graph attention networks, and graph auto encoder. [Results] Using common data sets and evaluation indicators for knowledge graph completion tasks, the effects of various models were comparatively analyzed in terms of MRR, MR, Hit@k and other performance evaluations, and prospects for future research were suggested. [Limitations] In the comparison of experimental results, only the evaluation results of some widely used models on the FB15K-237 and WN18RR datasets are discussed, the comparison of all models on the same dataset is lacking. [Conclusions] Compared with the representation learning model and the neural network model, the graph neural network model has better performance, but it still faces difficulties such as high complexity of model relationships, over-smoothness, and poor scalability and universality.

Key wordsKnowledge Graph Completion    Graph Neural Network    Graph Convolutional Neural Network    Graph Attention Network    Graph Auto Encoder Network
收稿日期: 2023-08-05      出版日期: 2024-04-12
ZTFLH:  TP391  
基金资助:* 中央高校基本科研业务费专项资金项目(2022JKF02015);公安部技术研究计划项目(2020JSYJC22)
通讯作者: 孙海春,E-mail: sunhaichun@ppsuc.edu.cn。   
引用本文:   
吴越, 孙海春. 基于图神经网络的知识图谱补全研究综述*[J]. 数据分析与知识发现, 2024, 8(3): 10-28.
Wu Yue, Sun Haichun. An Overview of Research on Knowledge Graph Completion Based on Graph Neural Network. Data Analysis and Knowledge Discovery, 2024, 8(3): 10-28.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2023.0753      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2024/V8/I3/10
Fig.1  知识图谱片段
分类 子类 经典模型
基于表示学习 平移距离结构 TransE[29]、TransH[33]、TransR[34]、RotatE[35]
张量分解 RESCAL[36]、DisMult[37]、ComplEx[38]、TuckER[39]
基于神经网络 基于卷积神经网络 ConvE[40]、InteractE[41]、ConvKB[42]
基于循环神经网络 RSN[43]
基于强化学习 DeepPath[44]
基于BERT KG-BERT[45]
基于图神经网络 基于图卷积神经网络 R-GCN[28]、RA-GCN[46]、SACN[47]、PGE-WGCN[48]、TransGCN[49]、VR-GCN[50]、COMPGCN[51]、KE-GCN[52]、GGSHCN[53]
基于图注意力网络 KBGAT[54]、ICGAT[55]、GS-InGAT[24]、RGHAT[56]、LSA-GAT[57]、GAFM[58]、DisenKGAT[59]、DRR-GAT[60]、GCAT[61]、MRGAT(1)[22]、MRGAT(2)[23]、HRGAT[62]、MA-GNN[25]
基于图自动编码网络 VGAE[63]、GAEAT[64]、R-GAE[65]、M2GNN[66]、GATE[67]
Table 1  知识图谱补全方法分类
Fig.2  知识图谱补全主要模型发展脉络
Fig.3  Encoder-Decoder框架
Fig.4  GCN模型演进示意图
Fig.5  R-GCN和RA-GCN模型中单个图节点更新示意图[28,46]
Fig.6  GAT模型演进示意图
Fig.7  GAE模型演进示意图
评估指标 详细计算公式 公式说明 运用任务
MRR M R R = 1 | ? S ? | i = 1 | ? S ? | 1 r a n k i ? = ? 1 | ? S ? | 1 r a n k 1 + 1 r a n k 2 + ? + 1 r a n k | ? S ? | 查询集S正确元素的排名记为k,其对应的积分为k的倒数 链接预测、关系预测
MR M R = 1 | ? S ? | i = 1 | ? S ? | r a n k i = 1 | ? S ? | ( r a n k 1 + r a n k 2 + ? + r a n k | ? S ? | ) 查询集S正确元素的排名记为k 链接预测、关系预测
Hits@k H i t s @ k = 1 | ? S ? | i = 1 | ? S ? | I ( r a n k | ? s ? | k ) [x]为指示函数,若条件真则为1,否则为0 链接预测、关系预测
MAP M A P = 1 S i = 1 S A P S APS 为查询集S的平均精度 链接预测、关系预测
Accuracy A c c = T P + T N T P + T N + F P + F N TP: True Positive(真阳性),FP: False Positive(假阳性),FN: False Negative(假阴性),TN: True Negative(真阴性) 实体分类
Recall R e c a l l = T P T P + F N 三元组中有多少正样本被正确预测 实体分类
Precision P r e c i s i o n = T P T P + F P 预测为正的三元组中有多少是真正的正样本 实体分类
Table 2  评估指标详细计算公式
数据集 实体
个数
关系类型个数 训练集三元组个数 验证集三元组个数 测试集三元组个数
FB15K-237 14 541 237 272 115 17 535 20 466
FB15K 14 951 1 345 483 142 50 000 59 071
WN18 40 943 18 141 442 5 000 5 000
WN18RR 40 943 11 86 835 3 034 3 134
Table 3  知识图谱补全任务常用数据集
模型 MRR MR Hit@10 Hit@3 Hit@1 模型 MRR MR Hit@10 Hit@3 Hit@1
TransE[29] 0.294 357 0.465 GGSHCN-ConvE[53] 0.337 0.506 0.370 0.254
DisMult[37] 0.241 254 0.419 0.263 0.155 GGSHCN-DisMult[53] 0.331 0.534 0.399 0.271
ComplEx[38] 0.247 339 0.428 0.275 0.158 DisenKGAT[59] 0.368 179 0.553 0.407 0.275
ConvE[40] 0.325 244 0.501 0.356 0.237 MRGAT(2)[23] 0.358 0.542 0.386 0.266
ConvKB[42] 0.243 311 0.421 0.371 0.155 GCAT[61] 0.359 0.540 0.395 0.269
R-GCN[28] 0.248 0.417 HRGAT[62] 0.366 156 0.542 0.404 0.271
SACN[47] 0.350 0.540 0.390 0.260 M2GNN[66] 0.362 0.565 0.398 0.275
VR-GCN[50] 0.248 0.432 0.272 0.159 DRR-GAT[60] 0.361 298 0.549 0.415 0.268
COMPGCN[51] 0.355 197 0.535 0.390 0.264 GS-InGAT[24] 0.382 109 0.567 0.416 0.283
RA-GCN[46] 0.249 0.417 MA-GNN[25] 0.379 145 0.569 0.415 0.282
Table 4  FB15K-237数据集上知识图谱补全模型的性能
模型 MRR MR Hit@10 Hit@3 Hit@1 模型 MRR MR Hit@10 Hit@3 Hit@1
TransE[29] 0.226 3 384 0.501 GGSHCN-ConvE[53] 0.497 0.583 0.534 0.442
DisMult[37] 0.430 5 110 0.490 0.440 0.390 GGSHCN-DisMult[53] 0.502 0.571 0.513 0.448
ComplEx[38] 0.440 5 261 0.510 0.460 0.410 DisenKGAT[59] 0.486 1 504 0.578 0.502 0.441
ConvE[40] 0.430 4 187 0.520 0.440 0.400 MRGAT(2)[23] 0.481 0.568 0.501 0.443
ConvKB[42] 0.249 3 324 0.524 0.471 0.057 GCAT[61] 0.482 0.546 0.495 0.447
R-GCN[28] 0.137 HRGAT[62] 0.491 2 685 0.567 0.503 0.454
SACN[47] 0.470 0.540 0.480 0.430 M2GNN[66] 0.485 0.572 0.498 0.444
VR-GCN[50] DRR-GAT[60] 0.468 2 596 0.578 0.507 0.421
COMPGCN[51] 0.479 3 533 0.546 0.494 0.443 GS-InGAT[24] 0.546 1 323 0.625 0.556 0.491
RA-GCN[46] MA-GNN[25] 0.565 886 0.679 0.592 0.507
Table 5  WN18RR数据集上知识图谱补全模型性能
模型 MUTAG/% AM/%
R-GCN[28] 73.23 89.29
SACN[47] 77.90 90.20
COMPGCN[51] 85.30 90.60
KE-GCN[52] 91.20
Table 6  实体分类任务中模型性能(准确性)
[1] Singhal A. Introducing the Knowledge Graph: Things, Not Strings[EB/OL]. [2023-07-02]. https://www.blog.google/products/search/introducing-knowledge-graph-things-not/.
[2] Auer S, Bizer C, Kobilarov G, et al. DBpedia: A Nucleus for a Web of Open Data[C]// Proceedings of the 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference. 2007: 722-735.
[3] Bollacker K, Evans C, Paritosh P, et al. Freebase: A Collaboratively Created Graph Database for Structuring Human Knowledge[C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. 2008: 1247-1250.
[4] Miller G A. WordNet: A Lexical Database for English[J]. Communications of the ACM, 1995, 38(11): 39-41.
[5] Noy N, Gao Y Q, Jain A, et al. Industry-Scale Knowledge Graphs: Lessons and Challenges[J]. Communications of the ACM, 2019, 62(8): 36-43.
doi: 10.1145/3331166
[6] Shrivastava S. Bring Rich Knowledge of People, Places, Things and Local Businesses to Your Apps[EB/OL].[2023-07-02]. https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps.
[7] 杨喆, 许甜, 靳哲, 等. 基于知识图谱的羊群疾病问答系统的构建与实现[J]. 华中农业大学学报, 2023, 42(3): 63-70.
[7] (Yang Zhe, Xu Tian, Jin Zhe, et al. Construction and Application of Knowledge Graph of Sheep & Goat Disease[J]. Journal of Huazhong Agricultural University, 2023, 42(3): 63-70.)
[8] 赵博, 王宇嘉, 倪骥. E-TUP:融合E-CP与TUP的联合知识图谱学习推荐方法[J/OL]. 计算机工程与应用. https://kns.cnki.net/kcms/detail/11.2127.tp.20230321.0843.002.htm.
[8] (Zhao Bo, Wang Yujia, Ni Ji. E-TUP: A Joint Knowledge Graph Learning Recommendation Method Incorporating E-CP and TUP[J/OL]. Computer Engineering and Applications. https://kns.cnki.net/kcms/detail/11.2127.tp.20230321.0843.002.htm.)
[9] Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 6000-6010.
[10] 任昊利, 罗飞. 舰船活动规律知识图谱分析系统研究[J]. 舰船科学技术, 2022, 44(1): 159-164.
[10] (Ren Haoli, Luo Fei. Research on the Knowledge Graph Analysis System of Ship Activity Law[J]. Ship Science and Technology, 2022, 44(1): 159-164.)
[11] 靳德武, 李鹏. 煤层底板水害防治智能决策支持系统框架构建[J]. 煤田地质与勘探, 2021, 49(1): 161-169.
[11] (Jin Dewu, Li Peng. Framework on Intelligent Decision Support System for Coal Seam Floor Water Hazard Prevention and Control[J]. Coal Geology & Exploration, 2021, 49(1): 161-169.)
[12] Yuan J B, Jin Z W, Guo H, et al. Constructing Biomedical Domain-Specific Knowledge Graph with Minimum Supervision[J]. Knowledge and Information Systems, 2020, 62(1): 317-336.
doi: 10.1007/s10115-019-01351-4
[13] 张志剑, 倪珍妮, 刘政昊, 等. 面向金融知识图谱的动态关系预测方法研究[J]. 数据分析与知识发现, 2023, 7(9): 39-50.
[13] (Zhang Zhijian, Ni Zhenni, Liu Zhenghao, et al. Predicting Dynamic Relationship for Financial Knowledge Graph[J]. Data Analysis and Knowledge Discovery, 2023, 7(9): 39-50.)
[14] You X D, Yang M J, Han J M, et al. Attribute Extraction Study in the Field of Military Equipment Based on Distant Supervision[J]. Wireless Communications and Mobile Computing, 2021, 2021: 2549488.
[15] 陈柯安. 基于开源数据的反恐知识图谱的本体库构建研究[D]. 北京: 中国人民公安大学, 2022.
[15] (Chen Kean. Ontology Repository Construction Research of Anti-terrorism Knowledge Graph Based on Open Source Data[D]. Beijing: People’s Public Security University of China, 2022.)
[16] Ji S X, Pan S R, Cambria E, et al. A Survey on Knowledge Graphs: Representation, Acquisition, and Applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514.
doi: 10.1109/TNNLS.2021.3070843
[17] 吴国栋, 刘涵伟, 何章伟, 等. 知识图谱补全技术研究综述[J]. 小型微型计算机系统, 2023, 44(3): 471-482.
[17] (Wu Guodong, Liu Hanwei, He Zhangwei, et al. Review of Knowledge Graph Completion Technology[J]. Journal of Chinese Computer Systems, 2023, 44(3): 471-482.)
[18] Zamini M, Reza H, Rabiei M. A Review of Knowledge Graph Completion[J]. Information, 2022, 13(8): 396.
doi: 10.3390/info13080396
[19] 杨大伟, 周刚, 卢记仓, 等. 基于知识表示学习的知识图谱补全研究综述[J]. 信息工程大学学报, 2021, 22(5): 558-565.
[19] (Yang Dawei, Zhou Gang, Lu Jicang, et al. Review of Knowledge Graph Completion Based on Knowledge Representation Learning[J]. Journal of Information Engineering University, 2021, 22(5): 558-565.)
[20] Shen T, Zhang F, Cheng J W. A Comprehensive Overview of Knowledge Graph Completion[J]. Knowledge-Based Systems, 2022, 255: 109597.
doi: 10.1016/j.knosys.2022.109597
[21] Arora S. A Survey on Graph Neural Networks for Knowledge Graph Completion[OL]. arXiv Preprint, arXiv: 2007.12374.
[22] Li Z F, Zhao Y, Zhang Y, et al. Multi-relational Graph Attention Networks for Knowledge Graph Completion[J]. Knowledge-Based Systems, 2022, 251: 109262.
doi: 10.1016/j.knosys.2022.109262
[23] Dai G Q, Wang X Z, Zou X Y, et al. MRGAT: Multi-Relational Graph Attention Network for Knowledge Graph Completion[J]. Neural Networks, 2022, 154: 234-245.
doi: 10.1016/j.neunet.2022.07.014 pmid: 35908373
[24] Yin H, Zhong J, Wang C, et al. GS-InGAT: An Interaction Graph Attention Network with Global Semantic for Knowledge Graph Completion[J]. Expert Systems with Applications, 2023, 228: 120380.
doi: 10.1016/j.eswa.2023.120380
[25] Xu H C, Bao J P, Liu W B. Double-Branch Multi-Attention Based Graph Neural Network for Knowledge Graph Completion[C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). 2023: 15257-15271.
[26] Hogan A, Blomqvist E, Cochez M, et al. Knowledge Graphs[J]. ACM Computing Surveys, 2021, 54(4): 71.
[27] Neelakantan A, Chang M W. Inferring Missing Entity Type Instances for Knowledge Base Completion: New Dataset and Methods[C]// Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. 2015: 515-525.
[28] Schlichtkrull M, Kipf T N, Bloem P, et al. Modeling Relational Data with Graph Convolutional Networks[C]// Proceedings of European Semantic Web Conference 2018:The Semantic Web. 2018: 593-607.
[29] Bordes A, Usunier N, Garcia-Durán A, et al. Translating Embeddings for Modeling Multi-relational Data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2. 2013: 2787-2795.
[30] Cai H Y, Zheng W C, Chang C C. A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637.
doi: 10.1109/TKDE.69
[31] Pan S R, Luo L H, Wang Y F, et al. Unifying Large Language Models and Knowledge Graphs: A Roadmap[J]. IEEE Transactions on Knowledge and Data Engineering, DOI: 10.1109/TKDE.2024.3352100.
[32] Lovelace J, Rosé C. A Framework for Adapting Pre-trained Language Models to Knowledge Graph Completion[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. 2022: 5937-5955.
[33] Wang Z, Zhang J W, Feng J L, et al. Knowledge Graph Embedding by Translating on Hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. 2014: 1112-1119.
[34] Lin Y K, Liu Z Y, Sun M S, et al. Learning Entity and Relation Embeddings for Knowledge Graph Completion[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. 2015: 2181-2187.
[35] Sun Z Q, Deng Z H, Nie J Y, et al. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space[OL]. arXiv Preprint, arXiv: 1902.10197.
[36] Nickel M, Tresp V, Kriegel H P. A Three-Way Model for Collective Learning on Multi-Relational Data[C] //Proceedings of the 28th International Conference on Machine Learning. 2011: 809-816.
[37] Yang B S, Yih W T, He X D, et al. Embedding Entities and Relations for Learning and Inference in Knowledge Bases[OL]. arXiv Preprint, arXiv: 1412.6575.
[38] Trouillon T, Welbl J, Riedel S, et al. Complex Embeddings for Simple Link Prediction[C]// Proceedings of the 33rd International Conference on Machine Learning - Volume 48. 2016: 2071-2080.
[39] Balažević I, Allen C, Hospedales T. TuckER: Tensor Factorization for Knowledge Graph Completion[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. 2019: 5185-5194.
[40] Dettmers T, Minervini P, Stenetorp P, et al. Convolutional 2D Knowledge Graph Embeddings[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018: 1811-1818.
[41] Vashishth S, Sanyal S, Nitin V, et al. InteractE: Improving Convolution-Based Knowledge Graph Embeddings by Increasing Feature Interactions[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020: 3009-3016.
[42] Nguyen D Q, Nguyen D Q, Nguyen T D, et al. A Convolutional Neural Network-Based Model for Knowledge Base Completion and Its Application to Search Personalization[J]. Semantic Web, 2019, 10(5): 947-960.
doi: 10.3233/SW-180318
[43] Guo L B, Sun Z Q, Hu W. Learning to Exploit Long-Term Relational Dependencies in Knowledge Graphs[C]// Proceedings of the 36th International Conference on Machine Learning. 2019: 2505-2514.
[44] Xiong W H, Hoang T, Wang W Y. DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017: 564-573.
[45] Yao L, Mao C S, Luo Y. KG-BERT: BERT for Knowledge Graph Completion[OL]. arXiv Preprint, arXiv: 1909.03193.
[46] Tian A Q, Zhang C H, Rang M, et al. RA-GCN: Relational Aggregation Graph Convolutional Network for Knowledge Graph Completion[C]// Proceedings of the 12th International Conference on Machine Learning and Computing. ACM, 2020: 580-586.
[47] Shang C, Tang Y, Huang J, et al. End-to-End Structure-Aware Convolutional Networks for Knowledge Base Completion[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019: 3060-3067.
[48] 罗妹秋, 张春霞, 彭成, 等. 基于解析图嵌入和加权图卷积网络的知识图谱补全[J]. 中国科学: 信息科学, 2022, 52(11): 2037-2057.
doi: 10.1360/SSI-2021-0217
[48] (Luo Meiqiu, Zhang Chunxia, Peng Cheng, et al. Knowledge Graph Completion Based on Parsing Graph Embedding and a Weighted Graph Convolutional Network[J]. SCIENTIA SINICA Informationis, 2022, 52(11): 2037-2057.)
doi: 10.1360/SSI-2021-0217
[49] Cai L, Yan B, Mai G C, et al. TransGCN: Coupling Transformation Assumptions with Graph Convolutional Networks for Link Prediction[C]// Proceedings of the 10th International Conference on Knowledge Capture. 2019: 131-138.
[50] Ye R, Li X, Fang Y J, et al. A Vectorized Relational Graph Convolutional Network for Multi-relational Network Alignment[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019: 4135-4141.
[51] Vashishth S, Sanyal S, Nitin V, et al. Composition-Based Multi-relational Graph Convolutional Networks[OL]. arXiv Preprint, arXiv: 1911.03082.
[52] Yu D H, Yang Y M, Zhang R H, et al. Knowledge Embedding Based Graph Convolutional Network[C]// Proceedings of the Web Conference 2021. 2021: 1619-1628.
[53] He H T, Niu H R, Feng J Z, et al. An Embedding Model for Knowledge Graph Completion Based on Graph Sub-Hop Convolutional Network[J]. Big Data Research, 2022, 30: 100351.
doi: 10.1016/j.bdr.2022.100351
[54] Nathani D, Chauhan J, Sharma C, et al. Learning Attention-Based Embeddings for Relation Prediction in Knowledge Graphs[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019: 4710-4723.
[55] 陆以勤, 潘周双, 张洋, 等. 基于交互式连接图注意力网络的知识图谱补全方法[J]. 华南理工大学学报(自然科学版), 2022, 50(12): 13-19.
doi: 10.12141/j.issn.1000-565X.220384
[55] (Lu Yiqin, Pan Zhoushuang, Zhang Yang, et al. Knowledge Graph Completion Method Based on Interactively Connected Graph Attention Network[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(12): 13-19.)
doi: 10.12141/j.issn.1000-565X.220384
[56] Zhang Z, Zhuang F Z, Zhu H S, et al. Relational Graph Neural Network with Hierarchical Attention for Knowledge Graph Completion[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020: 9612-9619.
[57] Ji KX, Hui B, Luo G C. Graph Attention Networks with Local Structure Awareness for Knowledge Graph Completion[J]. IEEE Access, 2020, 8: 224860-224870.
doi: 10.1109/ACCESS.2020.3044343
[58] Ma J T, Li D Y, Zhu H D, et al. GAFM: A Knowledge Graph Completion Method Based on Graph Attention Faded Mechanism[J]. Information Processing & Management, 2022, 59(5): 103004.
doi: 10.1016/j.ipm.2022.103004
[59] Wu J K, Shi W T, Cao X Z, et al. DisenKGAT: Knowledge Graph Embedding with Disentangled Graph Attention Network[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 2021: 2140-2149.
[60] Zhang X, Zhang C X, Guo J T, et al. Graph Attention Network with Dynamic Representation of Relations for Knowledge Graph Completion[J]. Expert Systems with Applications, 2023, 219: 119616.
doi: 10.1016/j.eswa.2023.119616
[61] 刘丹阳, 方全, 张晓伟, 等. 基于图对比注意力网络的知识图谱补全[J]. 北京航空航天大学学报, 2022, 48(8): 1428-1435.
[61] (Liu Danyang, Fang Quan, Zhang Xiaowei, et al. Knowledge Graph Completion Based on Graph Contrastive Attention Network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1428-1435.)
[62] Liang S, Zhu A J, Zhang J S, et al. Hyper-node Relational Graph Attention Network for Multi-modal Knowledge Graph Completion[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2023, 19(2): Article No. 62.
[63] Kifp T N, Welling M. Variational Graph Auto-Encoders[OL]. arXiv Preprint, arXiv: 1611.07308.
[64] Han Y F, Fang Q, Hu J, et al. GAEAT: Graph Auto-Encoder Attention Networks for Knowledge Graph Completion[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020: 2053-2056.
[65] Zhang S Y, Zhang Z, Zhuang F Z, et al. Compressing Knowledge Graph Embedding with Relational Graph Auto-Encoder[C]// Proceedings of 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication. 2020: 366-370.
[66] Wang S, Wei X K, dos Santos C N N, et al. Mixed-Curvature Multi-relational Graph Neural Network for Knowledge Graph Completion[C]// Proceedings of the Web Conference 2021. 2021: 1761-1771.
[67] Salehi A, Davulcu H. Graph Attention Auto-Encoders[C]// Proceedings of 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence. 2020: 989-996.
[68] Liu W, Wang P J, Zhang Z H, et al. Multi-scale Convolutional Neural Network for Temporal Knowledge Graph Completion[J]. Cognitive Computation, 2023, 15(3): 1016-1022.
doi: 10.1007/s12559-023-10134-7
[69] Kipf T N, Welling M. Semi-supervised Classification with Graph Convolutional Networks[OL]. arXiv Preprint, arXiv: 1609.02907.
[70] Veličković P, Cucurull G, Casanova A, et al. Graph Attention Networks[C]// Proceedings of the International Conference on Learning Representations (ICLR). 2018.
[71] 孙水发, 李小龙, 李伟生, 等. 图神经网络应用于知识图谱推理的研究综述[J]. 计算机科学与探索, 2023, 17(1): 27-52.
doi: 10.3778/j.issn.1673-9418.2207060
[71] (Sun Shuifa, Li Xiaolong, Li Weisheng, et al. Review of Graph Neural Networks Applied to Knowledge Graph Reasoning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 27-52.)
doi: 10.3778/j.issn.1673-9418.2207060
[72] Salha G, Limnios S, Hennequin R, et al. Gravity-Inspired Graph Autoencoders for Directed Link Prediction[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019: 589-598.
[73] Jang E, Gu S X, Poole B. Categorical Reparameterization with Gumbel-Softmax[OL]. arXiv Preprint, arXiv: 1611.01144.
[74] Suchanek F, Kasneci G M, Weikum G M. Yago: A Core of Semantic Knowledge Unifying WordNet and Wikipedia[C]// Proceedings of the 16th International Conference on World Wide Web. 2007.
[75] Ristoski P, de Vries G K D, Paulheim H. A Collection of Benchmark Datasets for Systematic Evaluations of Machine Learning on the Semantic Web[C]// Proceedings of International Semantic Web Conference. 2016: 186-194.
[76] 王春雷, 王肖, 刘凯. 多模态知识图谱表示学习综述[J]. 计算机应用, 2024, 44(1): 1-15.
doi: 10.11772/j.issn.1001-9081.2023050583
[76] (Wang Chunlei, Wang Xiao, Liu Kai. Multimodal Knowledge Graph Representation Learning: A Review[J]. Journal of Computer Applications, 2024, 44(1): 1-15.)
doi: 10.11772/j.issn.1001-9081.2023050583
[77] Wang X Z, Gao T Y, Zhu Z C, et al. KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation[J]. Transactions of the Association for Computational Linguistics, 2021, 9: 176-194.
doi: 10.1162/tacl_a_00360
[78] Yan S R, Lin K J, Zheng X L, et al. LkeRec: Toward Lightweight End-to-End Joint Representation Learning for Building Accurate and Effective Recommendation[J]. ACM Transactions on Information Systems, 2021, 40(3): Article No. 54.
[79] 侯靖琳, 仇润鹤, 薛季爱, 等. 基于知识图谱嵌入和补全的电梯故障预测[J]. 计算机工程与设计, 2022, 43(1): 224-230.
[79] (Hou Jinglin, Qiu Runhe, Xue Jiai, et al. Elevator Failure Prediction Based on Embedding and Completion of Knowledge Graph[J]. Computer Engineering and Design, 2022, 43(1): 224-230.)
[1] 张伟, 徐宗煌, 蔡鸿宇, 韩普, 石进. 基于情感增强和知识融合的在线健康社区情感分析研究*[J]. 数据分析与知识发现, 2024, 8(3): 53-62.
[2] 张雄涛, 祝娜, 郭玉慧. 基于图神经网络的会话推荐方法综述*[J]. 数据分析与知识发现, 2024, 8(2): 1-16.
[3] 普祥和, 王红斌, 线岩团. 结合类型感知注意力的少样本知识图谱补全*[J]. 数据分析与知识发现, 2023, 7(9): 51-63.
[4] 许鑫, 李倩, 姚占雷. 基于图神经网络的技术识别链接预测方法研究*[J]. 数据分析与知识发现, 2023, 7(6): 15-25.
[5] 裴伟, 孙水发, 李小龙, 鲁际, 杨柳, 吴义熔. 融合领域知识的医学命名实体识别研究*[J]. 数据分析与知识发现, 2023, 7(3): 142-154.
[6] 张贞港, 余传明. 基于实体与关系融合的知识图谱补全模型研究*[J]. 数据分析与知识发现, 2023, 7(2): 15-25.
[7] 魏建香, 陆谦, 韩普, 黄卫东. 基于多语义信息融合的事件检测模型*[J]. 数据分析与知识发现, 2023, 7(12): 64-74.
[8] 王松, 骆莹, 刘新民. 基于文本语义与关联网络双链路融合的用户生成内容价值早期识别研究*[J]. 数据分析与知识发现, 2023, 7(11): 101-113.
[9] 陈昊冉, 洪亮. 融合知识关联与时序传导的金融舆情风险预测模型*[J]. 数据分析与知识发现, 2023, 7(11): 1-13.
[10] 余本功, 季晓晗. 基于ADGCN-MFM的多模态讽刺检测研究*[J]. 数据分析与知识发现, 2023, 7(10): 85-94.
[11] 成全, 佘德昕. 融合患者体征与用药数据的图神经网络药物推荐方法研究*[J]. 数据分析与知识发现, 2022, 6(9): 113-124.
[12] 张若琦, 申建芳, 陈平华. 结合GNN、Bi-GRU及注意力机制的会话序列推荐*[J]. 数据分析与知识发现, 2022, 6(6): 46-54.
[13] 郭樊容, 黄孝喜, 王荣波, 谌志群, 胡创, 谢一敏, 司博宇. 基于Transformer和图卷积神经网络的隐喻识别*[J]. 数据分析与知识发现, 2022, 6(4): 120-129.
[14] 王露, 乐小虬. 基于句法依赖增强的主题-问题实例识别方法研究[J]. 数据分析与知识发现, 2022, 6(12): 13-22.
[15] 王洁,高原,张蕾,马力文,冯筠. 基于因果分析图的城市交通流短时预测研究*[J]. 数据分析与知识发现, 2022, 6(11): 111-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn