Please wait a minute...
Advanced Search
数据分析与知识发现  2024, Vol. 8 Issue (4): 152-166     https://doi.org/10.11925/infotech.2096-3467.2023.0389
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于采莓模型启示的探索式与查找式意图自动识别研究*
刘杰1,桂思思2,张晓娟3()
1西南大学计算机与信息科学学院 重庆 400715
2南京农业大学信息管理学院 南京 210095
3四川大学公共管理学院 成都 610065
Automatic Recognition of Exploratory and Lookup Intents Based on Berry Picking Model
Liu Jie1,Gui Sisi2,Zhang Xiaojuan3()
1College of Computer and Information Science, Southwest University, Chongqing 400715, China
2College of Information Management, Nanjing Agricultural University, Nanjing 210095, China
3School of Public Administration, Sichuan University, Chengdu 610065, China
全文: PDF (1473 KB)   HTML ( 4
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 通过选取新分类特征,提高探索式与查找式意图自动识别的准确度。【方法】 在AOL查询日志中,选取1 805个查询并对其进行人工标注;在采莓模型的启示下,分别从查询性质、搜索过程与信息来源三个层面提出分类特征;进一步比较所提出特征在朴素贝叶斯、SVM、决策树、随机森林与神经网络5种分类模型中的分类效果;最后分析不同特征集合以及每个特征的分类效果。【结果】 三种分类特征均能对探索式与查找式意图进行有效区分,其中查询性质相关特征的识别效果最佳;在5种分类模型中,采用神经网络算法的分类模型性能最佳(Accuracy=0.817 2,Precision=0.849 4,Recall=0.774 7,F1=0.810 3)。【局限】 未在多个数据集中验证新提出的分类特征的性能;未充分挖掘用户搜索行为以此形成更多有效的分类特征;由于人工标注存在高耗时、高人力成本等问题,使得最终应用于探索式/查找式意图识别的数据集有限。【结论】 基于采莓模型启示提出的特征能对探索式与查找式意图进行有效区分。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘杰
桂思思
张晓娟
关键词 查询意图识别探索式意图查找式意图采莓模型    
Abstract

[Objective] This paper selects several new classification features to improve the accuracy of automatic recognition of exploratory and lookup intents. [Methods] Firstly, we collected 1805 queries from the AOL search log and manually labelled them. Then, we proposed classification features from three aspects: query nature, search process, and information source inspired by the Berry Picking model. Third, we evaluated the performance of the proposed features in Naive Bayes, SVM, Decision Tree, Random Forest, and Neural Network. Finally, we explored the classification performance of individual features and feature sets. [Results] The three types of classification features can effectively distinguish exploratory and lookup intentions, with query nature-based features achieving the best performance. Among the five classification models, the neural network algorithm-based model performed the best (Accuracy=0.817 2,Precision=0.849 4,Recall=0.774 7,F1 Score=0.810 3). [Limitations] We did not examine the performances of newly proposed classification features with multiple datasets. User searching behaviors need to be fully explored to form more effective classification features. Moreover, the dataset applied to exploratory/lookup intent recognition was limited due to the high time consumption and labor cost of manual labelling. [Conclusions] The proposed features based on the Berry Picking model can effectively distinguish between exploratory and lookup intents.

Key wordsQuery Intent Recognition    Exploratory Intent    Lookup Intent    BerryPicking Model
收稿日期: 2023-04-29      出版日期: 2023-09-13
ZTFLH:  TP393  
  G354  
基金资助:* 国家社会科学基金青年项目(19CTQ023)
通讯作者: 张晓娟,ORCID:0000-0002-5889-5922, E-mail: zxj0614@scu.edu.cn。   
引用本文:   
刘杰, 桂思思, 张晓娟. 基于采莓模型启示的探索式与查找式意图自动识别研究*[J]. 数据分析与知识发现, 2024, 8(4): 152-166.
Liu Jie, Gui Sisi, Zhang Xiaojuan. Automatic Recognition of Exploratory and Lookup Intents Based on Berry Picking Model. Data Analysis and Knowledge Discovery, 2024, 8(4): 152-166.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2023.0389      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2024/V8/I4/152
Fig.1  Marchionini定义的搜索活动类别体系[3]
Fig.2  采莓模型[6-7]
查询重构类型 特征描述 查询示例
新建 Q i Q i + 1不包含任何共同术语 Q i:“back to the future”
Q i + 1:“holiday mansion houseboat”
添加 Q i Q i + 1的子集,即 Q i + 1中术语大于等于 Q i中术语 Q i:“select business servic。es”
Q i + 1:“select business services title”
替换 Q i Q i + 1包含至少一个共同术语和至少一个不同术语 Q i:“national real estate settlement services”
Q i + 1:“Pennsylvania real estate settlement services”
删除 Q i Q i + 1的超集,即 Q i中的术语个数大于等于 Q i + 1中的术语个数 Q i:“auto locator Pennsylvania”
Q i + 1:“auto locator”
重复 Q i Q i + 1包含完全相同的术语,这些术语的顺序可能不同 Q i:“coats tire equipment”
Q i + 1:“coats tire equipment”
Table 1  查询重构类型的定义与示例
采莓模型特征 本文分类特征
查询性质类 查询术语多样性(DQT) 查询 q所在的所有session中相邻两查询之间非共现术语所占比值的平均值
查询语义多样性(DQS) 查询 q所在的所有session中相邻两查询向量之间语义多样性的平均值
查询重构相关特征 (1)所有查询重构类型数的平均值(AART):查询 q所在session中,查询重构类型总数与session数的比值。
(2)每种查询重构类型的平均频率(AFRT):查询 q所在session中,某一重构类型数占同一session所有重构类型数的比值的总和与session数的比值
搜索过程类 查询重构路径平均长度(QRPL) 查询 q所在的所有session中全部查询重构路径的平均长度
查询重构路径平均时间间隔(AVTI) 查询 q所在的所有session中完成一个session中全部查询重构路径的平均时间间隔
重构路径类型数的平均值(ANRPT) 查询 q所在session中,查询重构路径类型总数与session数的比值
信息来源类 URL深度(UDP) 查询 q所在的所有session中共存于同一session的相邻两个URL路径中“/”的平均数量
URL多样性(UDV) 查询 q所在的所有session中共存于同一session的相邻两个URL之间的不同URL片段所占比值的平均值
Table 2  本文所选取多种分类的特征
Fig.3  AOL数据集格式
特征 查找式意图 探索式意图 全部
Precision Recall F1 Precision Recall F1 Accuracy
Baseline 0.750 0 0.536 3 0.625 4 0.643 8 0.824 2 0.722 9 0.681 4
所有新特征 0.848 1
(13%↑)
0.748 6
(40%↑)
0.795 3
(27%↑)
0.778 3
(21%↑)
0.868 1
(5%↑)
0.820 8
(14%↑)
0.808 9
(19%↑)
Baseline+查询性质类特征 0.846 2
(13%↑)
0.737 4
(37%↑)
0.788 1
(26%↑)
0.770 7
(20%↑)
0.868 1
(5%↑)
0.816 5
(13%↑)
0.803 3
(18%↑)
Baseline+搜索过程类特征 0.811 6
(8%↑)
0.625 7
(17%↑)
0.706 7
(13%↑)
0.699 6
(9%↑)
0.857 1
(4%↑)
0.770 4
(7%↑)
0.742 4
(9%↑)
Baseline+信息来源类特征 0.757 1
(0%↑)
0.592 2
(10%↑)
0.664 6
(6%↑)
0.669 7
(4%↑)
0.813 2
(1%↓)
0.734 5
(2%↑)
0.703 6
(3%↑)
Baseline+所有新特征 0.839 5
(12%↑)
0.759 8
(42%↑)
0.797 7
(28%↑)
0.783 9
(22%↑)
0.857 1
(4%↑)
0.818 9
(13%↑)
0.808 9
(19%↑)
Table 3  与以往特征的意图识别结果对比分析
分类模型 特征 Accuracy Precision Recall F1
朴素贝叶斯 ①查询性质特征集 0.606 6 0.603 1 0.642 9 0.622 4
②搜索过程特征集 0.565 1 0.562 8 0.615 4 0.587 9
③信息来源特征集 0.506 9 0.511 2 0.500 0 0.505 5
①+② 0.703 6 0.684 7 0.763 7 0.722 0
①+③ 0.700 8 0.814 2 0.514 0 0.630 1
②+③ 0.728 5 0.681 0 0.868 1 0.763 3
①+②+③ 0.772 9 0.750 0 0.824 2 0.785 4
SVM ①查询性质特征集 0.783 9 0.773 7 0.807 7 0.790 3
②搜索过程特征集 0.728 5 0.684 2 0.857 1 0.761 0
③信息来源特征集 0.578 9 0.564 1 0.725 3 0.634 6
①+② 0.803 3 0.800 0 0.813 2 0.806 5
①+③ 0.808 9 0.795 8 0.835 2 0.815 0
②+③ 0.728 5 0.685 8 0.851 6 0.759 8
①+②+③ 0.811 6 0.806 5 0.824 2 0.815 3
决策树 ①查询性质特征集 0.781 2 0.748 8 0.851 6 0.796 9
②搜索过程特征集 0.739 6 0.693 0 0.868 1 0.771 0
③信息来源特征集 0.659 3 0.613 0 0.879 1 0.722 3
①+② 0.783 9 0.757 4 0.840 7 0.796 9
①+③ 0.781 2 0.748 8 0.851 6 0.796 9
②+③ 0.764 5 0.762 2 0.774 7 0.768 4
①+②+③ 0.789 5 0.767 7 0.835 2 0.800 0
随机森林 ①查询性质特征集 0.797 8 0.771 1 0.851 6 0.809 4
②搜索过程特征集 0.759 0 0.723 0 0.846 2 0.779 8
③信息来源特征集 0.684 2 0.634 9 0.879 1 0.737 3
①+② 0.803 3 0.770 7 0.868 1 0.816 5
①+③ 0.806 1 0.771 8 0.873 6 0.819 6
②+③ 0.764 5 0.725 6 0.857 1 0.785 9
①+②+③ 0.808 9 0.778 3 0.868 1 0.820 8
神经网络 ①查询性质特征集 0.797 8 0.782 4 0.829 7 0.805 4
②搜索过程特征集 0.728 5 0.736 0 0.719 8 0.727 8
③信息来源特征集 0.703 6 0.688 4 0.752 7 0.719 1
①+② 0.811 6 0.790 8 0.851 6 0.820 1
①+③ 0.806 1 0.829 4 0.7747 0.801 1
②+③ 0.747 9 0.719 8 0.818 7 0.766 1
①+②+③ 0.817 2 0.849 4 0.774 7 0.810 3
Table 4  不同特征集在不同分类器上的分类性能
Fig.4  查询性质类特征的分类效果
Fig.5  搜索过程类特征的分类效果
Fig.6  信息来源类特征的分类效果
Fig.7  查询性质与搜索过程类特征的分类效果
Fig.8  查询性质与信息来源类特征的分类效果
Fig.9  搜索过程与信息来源类特征的分类效果
Fig.10  融合三类特征集的分类效果
Fig.11  单个特征之间的相关关系矩阵
特征 Accuracy Precision Recall F1
所有新特征 0.817 2 0.849 4 0.774 7 0.810 3
去除DQT 0.817 2 0.802 1 0.846 2 0.823 6
去除DQS 0.808 9 0.789 7 0.846 2 0.817 0
去除AART 0.803 3 0.778 9 0.851 6 0.813 6
去除AFRT_new 0.817 2 0.853 7 0.769 2 0.809 3
去除AFRT_add 0.808 9 0.798 9 0.829 7 0.814 0
去除AFRT_remove 0.808 9 0.786 8 0.851 6 0.817 9
去除AFRT_replace 0.795 0 0.772 7 0.840 7 0.805 3
去除AFRT_repeat 0.803 3 0.778 9 0.851 6 0.813 6
去除QRPL 0.803 3 0.778 9 0.851 6 0.813 6
去除AVTI 0.808 9 0.786 8 0.851 6 0.817 9
去除ANRPT 0.797 8 0.771 1 0.851 6 0.809 4
去除UDP 0.817 2 0.795 9 0.857 1 0.825 4
去除UDV 0.814 4 0.810 8 0.824 2 0.817 4
Table 5  去除单个特征的分类效果
[1] Broder A. A Taxonomy of Web Search[J]. ACM SIGIR Forum, 2002, 36(2): 3-10.
[2] White R W, Roth R A. Exploratory Search: Beyond the Query-Response Paradigm[J]. Synthesis Lectures on Information Concepts, Retrieval, and Services, 2009, 1(1): 1-98.
[3] Marchionini G. Exploratory Search: From Finding to Understanding[J]. Communications of the ACM, 2006, 49(4): 41-46.
[4] 袁红. 探索式搜寻意图对搜寻策略选择的影响机制研究[J]. 图书情报工作, 2022, 66(3): 93-105.
doi: 10.13266/j.issn.0252-3116.2022.03.011
[4] (Yuan Hong. Research on the Influence Mechanism of Exploratory Seeking Intention on Seeking Strategy Selection[J]. Library and Information Service, 2022, 66(3): 93-105.)
doi: 10.13266/j.issn.0252-3116.2022.03.011
[5] Crescenzi A, Ward A R, Li Y, et al. Supporting Metacognition during Exploratory Search with the OrgBox[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 1197-1207.
[6] Bates M J. The Design of Browsing and Berrypicking Techniques for the Online Search Interface[J]. Online Review, 1989, 13(5): 407-424.
[7] Savolainen R. Berrypicking and Information Foraging: Comparison of Two Theoretical Frameworks for Studying Exploratory Search[J]. Journal of Information Science, 2018, 44(5): 580-593.
[8] 付煜文, 马志柔, 刘杰, 等. 面向问题意图识别的深度主动学习方法[J]. 中文信息学报, 2021, 35(4): 92-99, 109.
[8] (Fu Yuwen, Ma Zhirou, Liu Jie, et al. Deep Active Learning Method for Question Intention Recognition[J]. Journal of Chinese Information Processing, 2021, 35(4): 92-99, 109.)
[9] 贺国秀, 张晓娟. 查询意图自动分类的方法改进探讨[J]. 数字图书馆论坛, 2018(1): 53-60.
[9] (He Guoxiu, Zhang Xiaojuan. Discussion on the Improvement of Methods for Automatic Classification of Query Intent[J]. Digital Library Forum, 2018(1): 53-60.)
[10] 桂思思, 陆伟, 张晓娟. 基于查询表达式特征的时态意图识别研究[J]. 数据分析与知识发现, 2019, 3(3): 66-75.
[10] (Gui Sisi, Lu Wei, Zhang Xiaojuan. Temporal Intent Classification with Query Expression Feature[J]. Data Analysis and Knowledge Discovery, 2019, 3(3): 66-75.)
[11] 郑新. 电子商务平台中用户查询意图识别与分析方法研究[J]. 西安文理学院学报(自然科学版), 2021, 24(1): 29-33.
[11] (Zheng Xin. Research on the Method of Identifying and Analyzing User's Query Intention in E-commerce Platform[J]. Journal of Xi'an University (Natural Science Edition), 2021, 24(1): 29-33.)
[12] 赵一鸣, 潘沛, 毛进. 基于任务知识融合与文本数据增强的医学信息查询意图强度识别研究[J]. 数据分析与知识发现, 2023, 7(2): 38-47.
[12] (Zhao Yiming, Pan Pei, Mao Jin. Recognizing Intensity of Medical Query Intentions Based on Task Knowledge Fusion and Text Data Enhancement[J]. Data Analysis and Knowledge Discovery, 2023, 7(2): 38-47.)
[13] 宋筱璇, 刘畅. 学习型搜索中用户信息源选择和使用策略研究[J]. 情报学报, 2019, 38(6): 655-666.
[13] (Song Xiaoxuan, Liu Chang. Exploring Users Information Source Selection and Use Strategies in Learning Related Search[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(6): 655-666.)
[14] Soufan A, Ruthven I, Azzopardi L. Searching the Literature: An Analysis of an Exploratory Search Task[C]// Proceedings of the 2022 Conference on Human Information Interaction and Retrieval. New York: ACM, 2022: 146-157.
[15] Rha E Y, Mitsui M, Belkin N J, et al. Exploring the Relationships Between Search Intentions and Query Reformulations[C]// Proceedings of the 79th ASIS&T Annual Meeting on Creating Knowledge, Enhancing Lives through Information & Technology. New York: ACM, 2016: 1-9.
[16] 杨杰, 徐越, 余建桥, 等. 基于搜索引擎日志的用户查询意图分类[J]. 指挥信息系统与技术, 2019, 10(2): 74-79.
[16] (Yang Jie, Xu Yue, Yu Jianqiao, et al. User Query Intention Classification Based on Search Engine Log[J]. Command Information System and Technology, 2019, 10(2): 74-79.)
[17] 王瑞雪, 方婧, 桂思思, 等. 基于深度学习算法的学术查询意图分类器构建[J]. 图书情报工作, 2021, 65(3): 93-99.
doi: 10.13266/j.issn.0252-3116.2021.03.012
[17] (Wang Ruixue, Fang Jing, Gui Sisi, et al. Deep Learning-Based Algorithm for Academic Query Intent Classification[J]. Library and Information Service, 2021, 65(3): 93-99.)
doi: 10.13266/j.issn.0252-3116.2021.03.012
[18] Tsai M F, Wu Y H. User Intent Prediction Search Engine System Based on Query Analysis and Image Recognition Technologies[J]. The Journal of Supercomputing, 2023, 79(5): 5327-5359.
[19] Kim Y M, Lee T H, Na S O. Constructing Novel Datasets for Intent Detection and NER in a Korean Healthcare Advice System: Guidelines and Empirical Results[J]. Applied Intelligence, 2023, 53(1): 941-961.
[20] Yu R, Limock, Dietze S. Still Haven't Found What You're Looking for-Detecting the Intent of Web Search Missions from User Interaction Features[OL]. arXiv Preprint, arXiv:2207.01256.
[21] Zamora J, Mendoza M, Allende H. Query Intent Detection Based on Query Log Mining[J]. Journal of Web Engineering, 2014, 13(1-2): 24-52.
[22] Hashemi H, Zamani H, Croft W B. Stochastic Optimization of Text Set Generation for Learning Multiple Query Intent Representations[C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 4003-4008.
[23] Natarajan V, Shanmuganathan S. Understanding Query Intention in Search Queries of Learners in Blended Learning Environments[C]// Proceedings of the 4th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA). Piscataway: IEEE, 2022: 308-315.
[24] Wang Y Q, Wang S, Li Y Y, et al. Recognizing Medical Search Query Intent by Few-Shot Learning[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 502-512.
[25] Shah C, Hendahewa C, González-Ibáñez R. Rain or Shine? Forecasting Search Process Performance in Exploratory Search Tasks[J]. Journal of the Association for Information Science and Technology, 2016, 67(7): 1607-1623.
[26] Etcheverry M, Moulin-Frier C, Oudeyer P Y. Hierarchically Organized Latent Modules for Exploratory Search in Morphogenetic Systems[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 4846-4859.
[27] Ward A R, Capra R. OrgBox: Supporting Cognitive and Metacognitive Activities During Exploratory Search[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 2570-2574.
[28] 邢玉艳, 刘萍. 探索式搜索前后用户认知结构变化研究[J]. 图书情报工作, 2021, 65(22): 74-84.
doi: 10.13266/j.issn.0252-3116.2021.22.008
[28] (Xing Yuyan, Liu Ping. Research on Users' Cognitive Structure Changes Before and After Exploratory Search[J]. Library and Information Service, 2021, 65(22): 74-84.)
doi: 10.13266/j.issn.0252-3116.2021.22.008
[29] Athukorala K, Oulasvirta A, Głowacka D, et al. Narrow or Broad?: Estimating Subjective Specificity in Exploratory Search[C]// Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. New York: ACM, 2014: 819-828.
[30] Athukorala K, Głowacka D, Jacucci G, et al. Is Exploratory Search Different? A Comparison of Information Search Behavior for Exploratory and Lookup Tasks[J]. Journal of the Association for Information Science and Technology, 2016, 67(11): 2635-2651.
[31] 袁红, 黄燕. 查询式搜索与探索式搜索行为比较研究——以健康信息为例[J]. 现代情报, 2019, 39(5): 48-56.
doi: 10.3969/j.issn.1008-0821.2019.05.007
[31] (Yuan Hong, Huang Yan. On the Comparation of Lookup and Exploratory Search Behavior—A Case Study of Health Information[J]. Journal of Modern Information, 2019, 39(5): 48-56.)
doi: 10.3969/j.issn.1008-0821.2019.05.007
[32] Agarwal M K, Sahu T. Lookup or Exploratory: What Is Your Search Intent?[OL]. arXiv Preprint, arXiv:2110.04640.
[33] Khattak A, Habib A, Asghar M Z, et al. Applying Deep Neural Networks for User Intention Identification[J]. Soft Computing, 2021, 25(3): 2191-2220.
[34] Hassan A, White R W, Dumais S T, et al. Struggling or Exploring?: Disambiguating Long Search Sessions[C]// Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 53-62.
[35] 魏丽, 张云秋. 探索式搜索行为的日志挖掘研究[J]. 图书情报工作, 2014, 58(11): 21-28.
doi: 10.13266/j.issn.0252-3116.2014.11.003
[35] (Wei Li, Zhang Yunqiu. A Study on Exploratory Search Behaviors Based on Log Mining[J]. Library and Information Service, 2014, 58(11): 21-28.)
doi: 10.13266/j.issn.0252-3116.2014.11.003
[36] Mikolov T, Sutskever I, Chen K, et al. Distributed Representations of Words and Phrases and Their Compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. New York: ACM, 2013: 3111-3119.
[37] Kinley K, Tjondronegoro D, Partridge H, et al. Human-Computer Interaction: The Impact of Users’ Cognitive Styles on Query Reformulation Behaviour During Web Searching[C]// Proceedings of the 24th Australian Computer-Human Interaction Conference. New York: ACM, 2012: 299-307.
[38] Kinley K, Tjondronegoro D, Partridge H, et al. Relationship between the Nature of the Search Task Types and Query Reformulation Behaviour[C]// Proceedings of the 17th Australasian Document Computing Symposium. New York: ACM, 2012: 39-46.
[39] White R W, Huang J. Assessing the Scenic Route: Measuring the Value of Search Trails in Web Logs[C]// Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2010: 587-594.
[40] 马超. 面向探索式搜索过程的查询推荐方法研究[D]. 沈阳: 东北大学, 2018.
[40] (Ma Chao. Research on Query Recommendation Methods Supporting Exploratory Search[D]. Shenyang: Northeastern University, 2018.)
[41] White R W, Drucker S M. Investigating Behavioral Variability in Web Search[C]// Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 21-30.
[42] Kang I H, Kim G C. Query Type Classification for Web Document Retrieval[C]// Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2003: 64-71.
[43] Ma C, Zhang B. A New Query Recommendation Method Supporting Exploratory Search Based on Search Goal Shift Graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(11): 2024-2036.
[44] Craswell N, Campos D, Mitra B, et al. ORCAS: 18 Million Clicked Query-Document Pairs for Analyzing Search[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 2983-2989.
[45] Yin D, Tan J W, Zhang Z, et al. Learning to Generate Personalized Query Auto-Completions via a Multi-View Multi-Task Attentive Approach[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 2998-3007.
[46] Li P F, Zhang Y, Zhang B. Understanding Query Combination Behavior in Exploratory Searches[J]. Applied Sciences, 2022, 12(2): 706-725.
[47] Fleiss J L, Cohen J. The Equivalence of Weighted Kappa and the Intraclass Correlation Coefficient as Measures of Reliability[J]. Educational & Psychological Measurement, 1973, 33(3):613-619.
[1] 张岚泽, 赵晓亮, 刘津彤, 顾益军. 基于空间-邻域自适应的图卷积神经网络信贷欺诈检测模型*[J]. 数据分析与知识发现, 2024, 8(4): 137-151.
[2] 凤丽洲, 刘馥榕, 王友卫. 基于图卷积网络和注意力机制的谣言检测方法*[J]. 数据分析与知识发现, 2024, 8(4): 125-136.
[3] 贺国秀, 任佳渝, 李宗耀, 林晨曦, 蔚海燕. 以可解释工具重探基于深度学习的谣言检测*[J]. 数据分析与知识发现, 2024, 8(4): 1-13.
[4] 王晰巍, 王秋月, 蔡宏天. 多维度注意力机制下网络舆情视觉情感识别模型及识别效果研究*[J]. 数据分析与知识发现, 2024, 8(3): 156-167.
[5] 周长顺, 应文豪, 钟珊, 龚声蓉. 一种用于解析问答推理过程的多轮迭代检索算法研究*[J]. 数据分析与知识发现, 2024, 8(3): 120-131.
[6] 倪亮, 吴鹏, 周雪晴. 基于深度学习的多模态新闻数据主题发现研究*[J]. 数据分析与知识发现, 2024, 8(3): 85-97.
[7] 陈卓, 蒋茜茜, 张晓娟. 网络结构变动对共词网络链路预测效果的影响研究*[J]. 数据分析与知识发现, 2024, 8(2): 114-130.
[8] 向姝璇, 操玉杰, 毛进. 基于权利要求层级特征的专利相似度计算方法研究*[J]. 数据分析与知识发现, 2024, 8(2): 33-43.
[9] 石水倩, 金晶, 沈耕宇, 王宝佳, 任妮. 基于多元相似度融合的中文命名实体消歧方法*[J]. 数据分析与知识发现, 2024, 8(2): 56-64.
[10] 张雄涛, 祝娜, 郭玉慧. 基于图神经网络的会话推荐方法综述*[J]. 数据分析与知识发现, 2024, 8(2): 1-16.
[11] 刘彤, 任欣儒, 尹金辉, 倪维健. 一种全面的少标签样本情形下的知识蒸馏方法*[J]. 数据分析与知识发现, 2024, 8(1): 104-113.
[12] 何玉, 张晓冬, 郑鑫. 基于SpERT-Aggcn模型的专利知识图谱构建研究*[J]. 数据分析与知识发现, 2024, 8(1): 146-156.
[13] 刘天畅, 王雷, 朱庆华. 基于SHAP解释方法的智慧居家养老服务平台用户流失预测研究*[J]. 数据分析与知识发现, 2024, 8(1): 40-54.
[14] 赵一鸣, 陈湛, 张帆. 探寻式搜索中用户满意度状态识别与演化规律研究*[J]. 数据分析与知识发现, 2024, 8(1): 90-103.
[15] 刘瑞, 陈烨. 考虑长短期兴趣及其演化的电影个性化动态推荐研究*[J]. 数据分析与知识发现, 2024, 8(1): 80-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn