Please wait a minute...
Advanced Search
数据分析与知识发现  2023, Vol. 7 Issue (9): 51-63     https://doi.org/10.11925/infotech.2096-3467.2022.0799
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
结合类型感知注意力的少样本知识图谱补全*
普祥和,王红斌(),线岩团
昆明理工大学信息工程与自动化学院 昆明 650500
昆明理工大学云南省人工智能重点实验室 昆明 650500
昆明理工大学云南省计算机技术应用重点实验室 昆明 650500
Few-Shot Knowledge Graph Completion Combined with Type-Aware Attention
Pu Xianghe,Wang Hongbin(),Xian Yantuan
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
Key Laboratory of Artificial Intelligence in Yunnan Province, Kunming University of Science and Technology, Kunming 650500, China
Yunnan Key Laboratory of Computer Technology Application, Kunming University of Science and Technology, Kunming 650500, China
全文: PDF (1516 KB)   HTML ( 16
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】现有少样本知识图谱补全方法在处理复杂关系时不能很好地区分邻居重要性,导致实体预测性能不佳。考虑充分利用实体邻居信息,提高少样本知识图谱补全方法的性能。【方法】通过类型感知邻居编码器学习实体邻居中包含的隐含类型信息,得到类型感知注意力,增强实体表示;利用Transformer编码器捕获任务关系的不同含义;通过联合匹配原型网络聚合参考集得到参考集表示并进行实体预测。【结果】在NELL和Wiki两个公共数据集上进行实体预测任务,实验结果表明,MRR指标分别较Baseline方法提高了1.6和1.2个百分点。【局限】未对与实体相关性较低的邻居进行筛选,使类型感知注意力权重的分配受到噪声影响。【结论】本文方法能够通过学习更丰富的实体邻居信息来有效提高少样本知识图谱补全的性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
普祥和
王红斌
线岩团
关键词 少样本知识图谱补全实体预测类型感知注意力    
Abstract

[Objective] The existing few-shot knowledge graph completion methods could not distinguish the importance of neighbors when dealing with complex relations, which resulting in low performance of entity prediction. The few-shot knowledge graph completion methods could be improved by considering entity neighbor information. [Methods] First, we use a type-aware neighbor coder to learn the implicit type information in the entity neighbor such that the type-aware attention can be obtained and the entity representation can be enhanced. Then, a Transformer encoder is used to capture different meanings of a task relation. Finally, the reference set representation is obtained by jointly matching the prototype network aggregation and predicting the entity. [Results] The proposed method is verified on NELL and Wiki datasets through entity prediction tasks. The results show that the MRR is 1.6% and 1.2% higher than the baseline methods on the two datasets, respectively. [Limitations] Neighbors with lower physical relevance were not filtered, and the noise would affect the distribution of type-aware attention weights. [Conclusions] Experimental results show that the proposed method improves the few-shot knowledge graph completion performance by learning more abundant entity neighbor information.

Key wordsFew-Shot Knowledge Graph Completion    Entity Prediction    Type-Aware Attention
收稿日期: 2022-08-01      出版日期: 2023-10-24
ZTFLH:  TP391  
  G350  
基金资助:*云南省重点研发计划项目(202202AD080003);国家自然科学基金项目(61966020)
通讯作者: 王红斌,ORCID:0000-0003-2176-2998,E-mail:whbin2007@126.com。   
引用本文:   
普祥和, 王红斌, 线岩团. 结合类型感知注意力的少样本知识图谱补全*[J]. 数据分析与知识发现, 2023, 7(9): 51-63.
Pu Xianghe, Wang Hongbin, Xian Yantuan. Few-Shot Knowledge Graph Completion Combined with Type-Aware Attention. Data Analysis and Knowledge Discovery, 2023, 7(9): 51-63.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.0799      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2023/V7/I9/51
Fig.1  实体实例及其邻居示意图
m 实体数(NELL) 实体数(Wiki)
2 10 173 111 012
3 3 671 21 233
4 1 886 5 879
10+ 2 204 14 047
Table 1  NELL和Wiki中的复杂实体规模
数据集 实体数 关系数 三元组数 任务数
NELL 68 545 358 181 109 67
Wiki 4 838 244 822 5 859 240 183
Table2  数据集规模
Fig.2  本文方法整体框架
方法 MRR Hits@10 Hits@5 Hits@1
TransE 0.174 0.313 0.231 0.101
DistMult 0.200 0.311 0.251 0.137
ComplEx 0.184 0.297 0.229 0.118
SimplE 0.158 0.285 0.226 0.097
RotatE 0.176 0.329 0.247 0.101
GMatching (MaxP) 0.176 0.294 0.233 0.113
GMatching (MeanP) 0.141 0.272 0.201 0.080
GMatching(Max) 0.147 0.244 0.197 0.090
FSRL 0.153 0.319 0.212 0.073
MetaR 0.209 0.355 0.280 0.141
FAAN 0.279 0.428 0.364 0.200
B-GMatching 0.198 0.276 0.280 0.134
本文方法(Multi-head 1) 0.295 0.430 0.372 0.221
本文方法(Multi-head 2) 0.296 0.426 0.362 0.227
本文方法(Multi-head 3) 0.291 0.418 0.362 0.218
Table 3   K = 5时不同方法在NELL数据集上的实验结果
方法 MRR Hits@10 Hits@5 Hits@1
TransE 0.133 0.187 0.157 0.100
DistMult 0.071 0.151 0.099 0.024
ComplEx 0.080 0.181 0.122 0.032
SimplE 0.093 0.180 0.128 0.043
RotatE 0.049 0.090 0.064 0.026
GMatching (MaxP) 0.263 0.387 0.337 0.197
GMatching (MeanP) 0.254 0.374 0.314 0.193
GMatching(Max) 0.245 0.372 0.295 0.185
FSRL 0.158 0.287 0.206 0.097
MetaR 0.323 0.418 0.385 0.270
FAAN 0.309/
0.341
0.451/
0.463
0.380/
0.395
0.239/
0.281
B-GMatching 0.220 0.336 0.275 0.172
本文方法(Multi-head 1) 0.321 0.468 0.389 0.251
本文方法(Multi-head 2) 0.322 0.463 0.397 0.251
本文方法(Multi-head 3) 0.321 0.451 0.386 0.257
Table 4   K = 5时不同方法在Wiki数据集上的实验结果
Fig.3  少样本大小影响实验结果
关系 方法 Hits@10 Hits@5 Hits@1 MRR
1 本文方法 1.000 0.971 0.971 0.976
FAAN 1.000 0.971 0.971 0.974
2 本文方法 0.179 0.104 0.029 0.077
FAAN 0.168 0.133 0.058 0.101
3 本文方法 0.781 0.781 0.234 0.467
FAAN 0.766 0.719 0.406 0.533
4 本文方法 0.007 0.007 0.007 0.009
FAAN 0.014 0.014 0.007 0.012
5 本文方法 0.341 0.307 0.157 0.231
FAAN 0.346 0.286 0.152 0.220
6 本文方法 0.617 0.527 0.346 0.442
FAAN 0.602 0.505 0.220 0.352
7 本文方法 0.745 0.694 0.531 0.602
FAAN 0.724 0.643 0.480 0.558
8 本文方法 0.296 0.163 0.059 0.135
FAAN 0.281 0.163 0.022 0.112
9 本文方法 0.857 0.813 0.407 0.572
FAAN 0.835 0.758 0.505 0.615
10 本文方法 0.128 0.074 0.033 0.061
FAAN 0.134 0.092 0.042 0.073
11 本文方法 0.659 0.601 0.322 0.435
FAAN 0.649 0.596 0.303 0.432
Table 5  不同关系比较实验结果
消融实验 MRR Hits@10 Hits@5 Hits@1
本文方法(- a 0.289 0.423 0.371 0.215
本文方法(-EP) 0.289 0.427 0.373 0.214
本文方法(-RP) 0.224 0.330 0.270 0.165
本文方法(-TAA) 0.278 0.420 0.351 0.208
本文方法(FAAN+) 0.289 0.426 0.368 0.218
FAAN 0.279 0.428 0.364 0.200
本文方法 0.295 0.430 0.372 0.221
Table 6  消融实验结果
Fig.4  NELL数据集可视化(节点个数为1 000)
Fig.5  注意力分布
[1] 李涓子, 侯磊. 知识图谱研究综述[J]. 山西大学学报(自然科学版), 2017, 40(3): 454-459.
[1] (Li Juanzi, Hou Lei. Reviews on Knowledge Graph Research[J]. Journal of Shanxi University(Natural Science Edition), 2017, 40(3): 454-459.)
[2] Bollacker K, Evans C, Paritosh P, et al. Freebase: A Collaboratively Created Graph Database for Structuring Human Knowledge[C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. 2008: 1247-1250.
[3] Lehmann J, Isele R, Jakob M, et al. DBpedia - A Large-Scale, Multilingual Knowledge Base Extracted from Wikipedia[J]. Semantic Web, 2015, 6(2): 167-195.
doi: 10.3233/SW-140134
[4] Carlson A, Betteridge J, Kisiel B, et al. Toward an Architecture for Never-Ending Language Learning[C]// Proceedings of the 24th AAAI Conference on Artificial Intelligence. 2010: 1306-1313.
[5] Vrandečić D, Krötzsch M. Wikidata: A Free Collaborative Knowledgebase[J]. Communications of the ACM, 2014, 57(10): 78-85.
[6] Xiong W H, Yu M, Chang S Y, et al. One-Shot Relational Learning for Knowledge Graphs[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 1980-1990.
[7] Chen M Y, Zhang W, Zhang W, et al. Meta Relational Learning for Few-Shot Link Prediction in Knowledge Graphs[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. 2019: 4216-4225.
[8] Zhang C X, Yao H X, Huang C, et al. Few-Shot Knowledge Graph Completion[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020: 3041-3048.
[9] Sheng J W, Guo S, Chen Z Y, et al. Adaptive Attentional Network for Few-Shot Knowledge Graph Completion[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. 2020: 1681-1691.
[10] Wang F, Xie Y Q, Zhang K, et al. Bert-Based Knowledge Graph Completion Algorithm for Few-Shot[C]// Proceedings of the 2nd International Conference on Big Data Economy and Information Management. 2021: 217-224.
[11] 王桢. 基于嵌入模型的知识图谱补全[D]. 广州: 中山大学, 2017.
[11] (Wang Zhen. Complement of Knowledge Map Based on Embedded Model[D]. Guangzhou: Sun Yat-Sen University, 2017.)
[12] Bordes A, Usunier N, Garcia-Durán A, et al. Translating Embeddings for Modeling Multi-Relational Data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. 2013: 2787-2795.
[13] Wang Z, Zhang J W, Feng J L, et al. Knowledge Graph Embedding by Translating on Hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence and the 26th Innovative Applications of Artificial Intelligence Conference. 2014: 1112-1119.
[14] Lin Y K, Liu Z Y, Sun M S, et al. Learning Entity and Relation Embeddings for Knowledge Graph Completion[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence and the 27th Innovative Applications of Artificial Intelligence Conference. 2015: 2181-2187.
[15] Ji G L, He S Z, Xu L H, et al, Knowledge Graph Embedding via Dynamic Mapping Matrix[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Languages Processing(Volume 1:Long Papers). 2015: 687-696.
[16] Sun Z Q, Deng Z H, Nie J Y, et al. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space[OL]. arXiv Preprint, arXiv:1902.10197.
[17] Zhang Z Q, Cai J Y, Zhang Y D, et al. Learning Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020: 3065-3072.
[18] Kazemi S M, Poole D. SimplE Embedding for Link Prediction in Knowledge Graphs[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018: 4289-4300.
[19] Ji S X, Pan S R, Cambria E, et al. A Survey on Knowledge Graphs: Representation, Acquisition, and Applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514.
doi: 10.1109/TNNLS.2021.3070843
[20] Nickel M, Tresp V, Kriegel H P. A Three-Way Model for Collective Learning on Multi-Relational Data[C]// Proceedings of the 28th International Conference on Machine Learning. 2011: 809-816.
[21] Yang B, Yih W T, He X, et al. Embedding Entities and Relations for Learning and Inference in Knowledge Bases[OL]. arXiv Preprint, arXiv:1412.6575.
[22] Nickel M, Rosasco L, Poggio T. Holographic Embeddings of Knowledge Graphs[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence and the 28th Innovative Applications of Artificial Intelligence Conference. 2016: 1955-1961.
[23] Trouillon T, Welbl J, Riedel S, et al. Complex Embeddings for Simple Link Prediction[C]// Proceedings of the 33rd International Conference on Machine Learning- Volume 48. 2016: 2071-2080.
[24] Dettmers T, Minervini P, Stenetorp P, et al. Convolutional 2D Knowledge Graph Embeddings[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018: 1811-1818.
[25] Cai L, Yan B, Mai G C, et al. TransGCN: Coupling Transformation Assumptions with Graph Convolutional Networks for Link Prediction[C]// Proceedings of the 10th International Conference on Knowledge Capture. 2019: 131-138.
[26] Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 6000-6010.
[27] Wang Q, Huang P, Wang H, et al. CoKE: Contextualized Knowledge Graph Embedding[OL]. arXiv Preprint, arXiv:1911.02168.
[28] Snell J, Swersky K, Zemel R S. Prototypical Networks for Few-Shot Learning[OL]. arXiv Preprint, arXiv:1703.05175.
[29] Kingma D P, Ba J. Adam: A Method for Stochastic Optimization[OL]. arXiv Preprint, arXiv:1412.6980.
[1] 何丽,杨美华,刘璐瑶. 融合SPO语义和句法信息的事件检测方法*[J]. 数据分析与知识发现, 2023, 7(9): 114-124.
[2] 翟东升, 娄莹, 阚慧敏, 何喜军, 梁国强, 马自飞. 基于多源异构数据的中医药知识图谱构建与应用研究*[J]. 数据分析与知识发现, 2023, 7(9): 146-158.
[3] 韩普, 顾亮, 叶东宇, 陈文祺. 基于多任务和迁移学习的中文医学文献实体识别研究*[J]. 数据分析与知识发现, 2023, 7(9): 136-145.
[4] 贺超城, 黄茜, 李欣儒, 王春迎, 吴江. 元宇宙的冷与热——融合BERT与动态主题模型的微博文本分析*[J]. 数据分析与知识发现, 2023, 7(9): 25-38.
[5] 鲍彤, 章成志. ChatGPT中文信息抽取能力测评——以三种典型的抽取任务为例*[J]. 数据分析与知识发现, 2023, 7(9): 1-11.
[6] 张颖怡, 章成志, 周毅, 陈必坤. 基于ChatGPT的多视角学术论文实体识别:性能测评与可用性研究*[J]. 数据分析与知识发现, 2023, 7(9): 12-24.
[7] 徐晨, 张巍. 不平衡数据背景下基于文本线索的公益众筹欺诈项目检测*[J]. 数据分析与知识发现, 2023, 7(9): 125-135.
[8] 向卓元, 陈浩, 王倩, 李娜. 面向任务型对话的小样本语言理解模型研究*[J]. 数据分析与知识发现, 2023, 7(9): 64-77.
[9] 钱聪, 齐江蕾, 丁浩. 基于用户多重兴趣漂移特征权重的网络出版物推荐研究*[J]. 数据分析与知识发现, 2023, 7(8): 119-127.
[10] 聂卉, 蔡瑞昇. 引入注意力机制的在线问诊推荐研究*[J]. 数据分析与知识发现, 2023, 7(8): 138-148.
[11] 李洋, 赵吉昌. 基于神经网络的CEO表情分析及其对发布会媒体关注度的影响*[J]. 数据分析与知识发现, 2023, 7(8): 46-61.
[12] 刘洋, 丁星辰, 马莉莉, 王淳洋, 朱立芳. 基于多维度图卷积网络的旅游评论有用性识别*[J]. 数据分析与知识发现, 2023, 7(8): 95-104.
[13] 刘政昊, 张志剑, 陈帅朴, 曾曦. 面向金融领域的风险事件演化关系建模与表示方法研究*[J]. 数据分析与知识发现, 2023, 7(8): 78-94.
[14] 迪路阳, 钟寒, 施水才. 网络舆情预警研究综述*[J]. 数据分析与知识发现, 2023, 7(8): 17-29.
[15] 陈柳, 郭宇红. 融合Motif结构高阶相似度的文献推荐算法*[J]. 数据分析与知识发现, 2023, 7(7): 146-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn