Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (3): 102-111    DOI: 10.11925/infotech.2096-3467.2018.0837
Current Issue | Archive | Adv Search |
Research on Impact of Commodity Online Evaluation for Consumption Convergence
Xiang Li,Xiaodong Qian()
School of Economics & Management, Lanzhou Jiaotong University, Lanzhou 730070, China
Download: PDF (1275 KB)   HTML ( 4
Export: BibTeX | EndNote (RIS)      

[Objective] This paper aims to explore the factors influencing consumer convergence in e-commerce. [Methods] Based on the BBV model, this paper optimized that model from the following two aspects in view of characteristics of the commodity-consumer binary network: selecting the nodes partially preferred and partially random and separately defining the weight distribution method of two types of nodes in the network during evolution. By comparing the evolution process and results of the model under different parameters, explored the impact of node weight, random factor and increase ratio of two types of nodes on consumer convergence. [Results] The evolution result proved that consumer convergence is influenced by node weight, random factor and increase ratio of two types of nodes. [Limitations] Only some typical parameters were selected, and the parameters lacked continuity. [Conclusions] Good initial online evaluation of product, high consumer rationality and low commodity market activity all contribute to a higher level of consumer convergence.

Key wordsComplex Network      Evolution      Online Evaluation      Convergence Consumption      Bipartite Weighted Network     
Received: 29 July 2018      Published: 17 April 2019

Cite this article:

Xiang Li,Xiaodong Qian. Research on Impact of Commodity Online Evaluation for Consumption Convergence. Data Analysis and Knowledge Discovery, 2019, 3(3): 102-111.

URL:     OR

[1] 中国社会科学院财经战略研究院, 央视财经. 中国电子商务年报(2017)[EB/OL]. [2018-06-04]. .
[1] (National Academy of Economic Strategy, CCTV Finance and Economics. China Electronic Commerce Semi-Annual Report [EB/OL]. [2018-06-04].
[2] Aly M, Hatch A, Josifovski V, et al.Web-Scale User Modeling for Targeting[C]// Proceedings of the 21st International Conference on World Wide Web. ACM, 2012: 3-12.
[3] Aly M, Pandey S, Josifovski V, et al.Towards a Robust Modeling of Temporal Interest Change Patterns for Behavioral Targeting[C]// Proceedings of the 22nd International Conference on World Wide Web. ACM, 2013: 71-82.
[4] Zheng N, Jin X, Li L.Cross-Region Collaborative Filtering for New Point-of-Interest Recommendation[C]// Proceedings of the 22nd International Conference on World Wide Web. ACM, 2013: 45-46.
[5] Chu W, Choi B, Song M R.The Role of On-line Retailer Brand and Infomediary Reputation in Increasing Consumer Purchase Intention[J]. International Journal of Electronic Commerce, 2005, 9(3): 115-127.
[6] Aarts H, Dijksterhuis A.How Often Did I Do It? Experienced Ease of Retrieval and Frequency Estimates of Past Behavior[J]. Acta Psychologica, 1999, 103(1-2): 77-89.
[7] 周宏, 张皓, 劳沛基, 等.网络互动中的群体趋同效应及其影响机制[J]. 科技进步与对策, 2014, 31(13): 68-72.
[7] (Zhou Hong, Zhang Hao, Lao Peiji, et al.The Group Convergence Effect and Influence Mechanism in the Network Interaction[J]. Science & Technology Progress and Policy, 2014, 31(13): 68-72.)
[8] 李在军, 管卫华, 吴启焰, 等. 1978-2011年间中国区域消费水平的时空演变[J]. 地球信息科学学报, 2014, 16(5): 746-753.
[8] (Li Zaijun, Guan Weihua, Wu Qiyan, et al.The Temporal and Spatial Trend of China’s Regional Consumption Level Since the Reform and Opening up[J]. Journal of Geo-Information Science, 2014, 16(5): 746-753.)
[9] 蔺国伟, 白凯, 刘晓慧. 参照群体对中国消费者海外旅游购物趋同行为的影响[J]. 资源科学, 2015, 37(11): 2151-2161.
[9] (Lin Guowei, Bai Kai, Liu Xiaohui.The Influence of Reference Groups on the Conformity Behavior of Overseas Shopping by Chinese Tourists[J]. Resources Science, 2015, 37(11): 2151-2161.)
[10] 张晶. 趋同与差异:合法性机制下的消费转变——基于北京地区青年女性农民工消费的实证研究[J]. 中国青年研究, 2010(6): 58-63.
[10] (Zhang Jing.Convergence and Difference: Consumption Transformation Under Legitimacy Mechanism ——Based on the Empirical Study of Young Female Migrant Workers’ Consumption in Beijing[J]. China Youth Study, 2010(6): 58-63.)
[11] 齐飞. 旅游消费者行为: 后现代主义下的趋同与分化[J]. 旅游学刊, 2014, 29(7): 11-12.
[11] (Qi Fei.Tourism Consumer Behavior: Convergence and Differentiation Under Postmodernism[J]. Tourism Tribune, 2014, 29(7): 11-12.)
[12] Chen D N, Yang Y S, Ku Y C.A Trust Perspective to Study the Intentions of Consumers to the Group Buying[A]// E-Life: Web-Enabled Convergence of Commerce, Work, and Social Life[M]. Springer, 2011, 108: 153-166.
[13] 郝放, 庞隽, 刘晓梅. 不同类型的社会排斥对消费者形状偏好的影响机制[J]. 中国流通经济, 2018,32(8): 70-78.
[13] (Hao Fang, Pang Juan, Liu Xiaomei.The Effect of Different Types of Social Exclusion on Consumers’ Shape Preference[J]. China Business and Market, 2018, 32(8): 70-78.)
[14] Chen Y F.Herd Behavior in Purchasing Books Online[J]. Computers in Human Behavior, 2008, 24(5): 1977-1992.
[15] 吴坚, 符国群. 品牌来源国和产品制造国对消费者购买行为的影响[J]. 管理学报, 2007, 4(5): 593-601.
[15] (Wu Jian, Fu Guoqun.Effects of Brand-Originating Counties and Product-Made Counties on a Consumer’s Product Evaluation and Purchase Intension[J]. Chinese Journal of Management, 2007, 4(5): 593-601.)
[16] Oromendía A R, Paz M D R, Rufín R. Research Note: Relationship Versus Transactional Marketing in Travel and Tourism Trade Shows[J]. Tourism Economics, 2015, 21(2): 427-434.
[17] Barrat A, Bathelemy M, Vespignani A.Modeling the Evolution of Weighted Networks[J]. Physical Review E, 2004, 70(6): 1-12.
[18] Varela LM, Rotundo G, Ausloos M, et al.Complex Network Analysis in Socioeconomic Models[J]. Complexity and Geographical Economics, 2014, 19: 209-245.
[19] 王进良, 张鹏, 狄增如, 等. 北京师范大学图书借阅系统的网络分析[J]. 情报学报, 2009, 28(1): 137-141.
[19] (Wang Jinliang, Zhang Peng, Di Zengru, et al.Network Analysis Based on Loan System of Library of Beijing Normal University[J]. Journal of the China Society for Scientific and Technical Information, 2009, 28(1): 137-141.)
[20] Latapy M, Magnien C, Vecchio N D.Basic Notions for the Analysis of Large Two Mode Networks[J]. Social Networks, 2008, 30(1): 31-48.
[21] Erdös P, Rényi A.On Random Graphs I[J]. Publicationes Mathematicae Debrecen, 1959, 9: 290-297.
[22] Barabasi A L, Albert R.Emergence of Scaling in Random Networks[J]. Science, 1999, 286(5439): 509-512.
[23] 维弗雷多·帕累托. 无处不在的80/20[M]. 郑麟译. 第1版. 北京: 机械工业出版社, 2003: 45-55.
[23] (Pareto V.The Ubiquitous Twenty-Eight Law[M]. Translated by Zheng Lin. The 1st Edition. Beijing: Mechanical Industry Press, 2003: 45-55.)
[24] User Behavior Data on Taobao/Tmall IJCAI16[DS/OL]. [2018-04-02].
[1] Chen Wenjie,Wen Yi,Yang Ning. Fuzzy Overlapping Community Detection Algorithm Based on Node Vector Representation[J]. 数据分析与知识发现, 2021, 5(5): 41-50.
[2] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[3] Shen Si,Li Qinyu,Ye Yuan,Sun Hao,Ye Wenhao. Topic Mining and Evolution Analysis of Medical Sci-Tech Reports with TWE Model[J]. 数据分析与知识发现, 2021, 5(3): 35-44.
[4] Wang Wei, Gao Ning, Xu Yuting, Wang Hongwei. Topic Evolution of Online Reviews for Crowdfunding Campaigns[J]. 数据分析与知识发现, 2021, 5(10): 103-123.
[5] Guan Peng,Wang Yuefen,Jin Jialin,Fu Zhu. Developments of Tech-Innovation Network for Patent Cooperation: Case Study of Speech Recognition in China[J]. 数据分析与知识发现, 2021, 5(1): 112-127.
[6] Ye Guanghui,Xu Tong. Dynamic City Profile Based on Evolutionary Analysis[J]. 数据分析与知识发现, 2020, 4(9): 100-110.
[7] Liu Qian, Li Chenliang. A Survey of Topic Evolution on Social Media[J]. 数据分析与知识发现, 2020, 4(8): 1-14.
[8] Yue Lixin,Liu Ziqiang,Hu Zhengyin. Evolution Analysis of Hot Topics with Trend-Prediction[J]. 数据分析与知识发现, 2020, 4(6): 22-34.
[9] Ye Guanghui,Zeng Jieyan,Hu Jinglan,Bi Chongwu. Analyzing Public Sentiments from the Perspective of City Profiles[J]. 数据分析与知识发现, 2020, 4(4): 15-26.
[10] Li Wenzheng,Gu Yijun,Yan Hongli. Predicting Community Numbers with Network Bayesian Information Criterion[J]. 数据分析与知识发现, 2020, 4(4): 72-82.
[11] Chen Ting,Wang Haiming,Wang Xiaomei. Detecting Funding Topics Evolutions with Visualization[J]. 数据分析与知识发现, 2020, 4(2/3): 60-67.
[12] Ye Guanghui,Xu Tong,Bi Chongwu,Li Xinyue. Analyzing Evolution of City Tourism Portraits with Multi-Dimensional Features and LDA Model[J]. 数据分析与知识发现, 2020, 4(11): 121-130.
[13] Xuhui Li,Tao Yu,Ting Li,Yiwen Li,Jinguang Gu. An Evolutionary Schema for Metadata Description[J]. 数据分析与知识发现, 2020, 4(1): 76-88.
[14] Jianhua Hou,Pan Liu. Measuring Tech-Entropy of System Evolution: An Empirical Study of Patents[J]. 数据分析与知识发现, 2019, 3(8): 21-29.
[15] Peng Guan,Yuefen Wang,Zhu Fu. Analyzing Topic Semantic Evolution with LDA: Case Study of Lithium Ion Batteries[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938