Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (11): 24-34    DOI: 10.11925/infotech.2096-3467.2019.0109
Current Issue | Archive | Adv Search |
Identifying Urban Intersections with GPS Trajectories
Yuan Gao1,Dong Wang2,Hongwei Feng2(),Yuanlei Shi2,Zhizhou Duan2
1 School of Economics & Management, Northwest University, Xi’an 710127, China;
2 School of Information Science & Technology, Northwest University, Xi’an 710127, China;
Download: PDF (2749 KB)   HTML ( 12
Export: BibTeX | EndNote (RIS)      

[Objective] This paper proposes a new supervised learning method to identify road intersections automatically based on GPS trajectory data generated by travelers in the mixed traffic mode. [Methods] Firstly, we encoded and partitioned the original trajectory data and their active regions with the GeoHash algorithm. Then, the coded trajectory and the coding matrix of active regions were mapped into a binary fusion matrix for characteristics of road intersections. Finally, we employed the K nearest neighbor classification algorithm with sliding window to identify the intersections. [Results] The proposed method was more efficient than the Latitude and Longitude Coordination based systems. Encoding with GeoHash algorithm helped us reduce the volume of datasets by 61%. It had better performance than the turning-angle based methods, and its F1-measure score was 0.82 with the distance measure of 50 meters. [Limitations] More real life GPS data is needed to better evaluate our method’s performance. [Conclusions] The proposed method is robust to the changing of sampling frequencies and could effectively identify the urban intersections based on GPS trajectory data.

Key wordsAutomatic Intersection Identification      GPS Trajectory      GeoHash Coding      K Nearest Neighbor Algorithm     
Received: 24 January 2019      Published: 18 December 2019
ZTFLH:  P209  
Corresponding Authors: Hongwei Feng     E-mail:

Cite this article:

Yuan Gao,Dong Wang,Hongwei Feng,Yuanlei Shi,Zhizhou Duan. Identifying Urban Intersections with GPS Trajectories. Data Analysis and Knowledge Discovery, 2019, 3(11): 24-34.

URL:     OR

字符串长度 误差(km) 字符串长度 误差(km) 字符串长度 误差(km)
1 ±2500 4 ±20 7 ±0.076
2 ±630 5 ±2.4 8 ±0.019
3 ±78 6 ±0.61 9 ±0.002
纬度 经度 海拔(英尺) 转化日期 日期 时间
39.9066 116.3855 49 240 097 586516198 2009-10-11 14:04:30
39.9065 116.3856 49 240 097 586516203 2009-10-11 14:04:35
P R F1-Measure
基于转向角度的方法 0.73 0.81 0.77.
本文提出方法 0.87 0.76 0.82
[1] Parent C, Spaccapietra S, Renso C, et al. Semantic Trajectories Modeling and Analysis[J]. ACM Computing Surveys , 2013, 45(4): Article No. 42.
[2] 肖延辉, 王欣, 冯文刚 , 等. 基于长短记忆型卷积神经网络的犯罪地理位置预测方法[J]. 数据分析与知识发现, 2018,2(10):15-20.
[2] ( Xiao Yanhui, Wang Xin, Feng Wengang , et al. Predicting Crime Locations Based on Long Short Term Memory and Convolutional Neural Networks[J]. Data Analysis and Knowledge Discovery, 2018,2(10):15-20.)
[3] Cui G, Luo J, Wang X . Personalized Travel Route Recommendation Using Collaborative Filtering Based on GPS Trajectories[J]. International Journal of Digital Earth, 2018,11(3):284-307.
doi: 10.1080/17538947.2017.1326535
[4] Ahmed M, Karagiorgou S, Pfoser D , et al. A Comparison and Evaluation of Map Construction Algorithms Using Vehicle Tracking Data[J]. GeoInformatica, 2015,19(3):601-632.
doi: 10.1007/s10707-014-0222-6
[5] Wan C, Zhu Y, Yu J , et al. SMOPAT: Mining Semantic Mobility Patterns from Trajectories of Private Vehicles[J]. Information Sciences, 2018,429:12-25.
doi: 10.1016/j.ins.2017.10.043
[6] Wang J, Wang C, Song X , et al. Automatic Intersection and Traffic Rule Detection by Mining Motor-Vehicle GPS Trajectories[J]. Computers, Environment and Urban Systems, 2017,64:19-29.
doi: 10.1016/j.compenvurbsys.2016.12.006
[7] Yu J, Lu P . Learning Traffic Signal Phase and Timing Information from Low-Sampling Rate Taxi GPS Trajectories[J]. Knowledge-Based Systems, 2016,110:275-292.
doi: 10.1016/j.knosys.2016.07.036
[8] 李旭晖, 刘洋 . 时空数据建模方法研究综述[J]. 数据分析与知识发现, 2019,3(3):1-13.
[8] ( Li Xuhui, Liu Yang . Review of Spatio-temporal Data Modeling Methods[J]. Data Analysis and Knowledge Discovery, 2019,3(3):1-13.)
[9] Sghaier M O, Lepage R . Road Extraction from Very High Resolution Remote Sensing Optical Images Based on Texture Analysis and Beamlet Transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017,9(5):1946-1958.
[10] Zhang Y, Liu J, Qian X , et al. An Automatic Road Network Construction Method Using Massive GPS Trajectory Data[J]. International Journal of Geo-Information, 2017,6(12):400.
[11] Hillel A B, Lerner R, Levi D , et al. Recent Progress in Road and Lane Detection: A Survey[J]. Machine Vision and Applications, 2014,25(3):727-745.
doi: 10.1007/s00138-011-0404-2
[12] 李建飞 . 高分辨率遥感影像中的道路信息提取与表达方法研究[D]. 株洲:湖南工业大学, 2015.
[12] ( Li Jianfei . Research on Road Extraction and Representation from High Resolution Remote Sensing Images[D]. Zhuzhou: Hunan University of Technology, 2015.)
[13] 蔡红玥, 姚国清 . 高分辨率遥感图像道路交叉口自动提取[J]. 国土资源遥感, 2016,28(1):63-71.
doi: 10.6046/gtzyyg.2016.01.10
[13] ( Cai Hongyue, Yao Guoqing . Auto-Extraction of Road Intersection from High Resolution Remote Sensing Image[J]. Remote Sensing for Land and Resources, 2016,28(1):63-71.)
doi: 10.6046/gtzyyg.2016.01.10
[14] 郭风成, 李参海, 李宗春 , 等. 高分辨率SAR影像道路交叉口自动提取方法[J]. 测绘科学技术学报, 2017,34(2):200-203.
[14] ( Guo Fengcheng, Li Canhai, Li Zongchun , et al. A New Method for Automatic Extraction Road Junctions from High Resolution SAR Images[J]. Journal of Geomatics Science and Technology, 2017,34(2):200-203.)
[15] 陈光, 陈良超, 王国牛 , 等. 像元结构指数的平面道路交叉口提取方法[J]. 测绘科学, 2017,42(10):148-153.
[15] ( Chen Guang, Chen Liangchao, Wang Guoniu , et al. Plane Road Intersection Extraction Method Based on Pixel Structure Index[J]. Sciences of Surveying and Mapping, 2017,42(10):148-153.)
[16] Wang J, Rui X, Song X , et al. A Novel Approach for Generating Routable Road Maps from Vehicle GPS Traces[J]. International Journal of Geographical Information Science, 2015,29(1):69-91.
doi: 10.1080/13658816.2014.944527
[17] Karagiorgou S, Pfoser D . On Vehicle Tracking Data-Based Road Network Generation [C]// Proceedings of the 20th International Conference on Advances in Geographic Information Systems. 2012: 89-98.
[18] Liu J, Cai B, Wang Y , et al. Generating Enhanced Intersection Maps for Lane Level Vehicle Positioning Based Applications[J]. Procedia-Social and Behavioral Sciences, 2013,96:2395-2403.
doi: 10.1016/j.sbspro.2013.08.268
[19] Huang J, Deng M, Zhang Y , et al. Complex Road Intersection Modelling Based on Low-Frequency GPS Track Data[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, DOI: 10.5194/isprs-archives-XLII-2-W7-23-2017.
[20] 唐炉亮, 牛乐, 杨雪 , 等. 利用轨迹大数据进行城市道路交叉口识别及结构提取[J]. 测绘学报, 2017,46(6):770-779.
[20] ( Tang Luliang, Niu Le, Yang Xue , et al. Urban Intersection Recognition and Construction Based on Big Trace Data[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(6):770-779.)
[21] Xie X, Liao W, Aghajan H , et al. Detecting Road Intersections from GPS Traces Using Longest Common Subsequence Algorithm[J]. International Journal of Geo-Information, 2016,6(1):1.
[22] Balzano W, Del Sorbo M R . SeTra: A Smart Framework for GPS Trajectories’ Segmentation [C]// Proceedings of the 2014 International Conference on Intelligent Networking and Collaborative Systems. IEEE, 2014: 362-368.
[23] Niemeyer G . GeoHash Tips & Tricks[EB/OL]. [ 2018- 03- 21]. .
[24] Zhou Y, De S, Wang W , et al. Spatial Indexing for Data Searching in Mobile Sensing Environments[J]. Sensors, 2017,17(6):1427.
doi: 10.3390/s17061427 pmid: 28629156
[25] Zheng Y, Zhang L, Xie X , et al. Mining Interesting Locations and Travel Sequences from GPS Trajectories [C]// Proceedings of the 18th International Conference on World Wide Web. 2009: 791-800.
[26] Zheng Y, Xie X, Ma W Y . GeoLife: A Collaborative Social Networking Service Among User, Location and Trajectory[J]. IEEE Data Engineering Bulletin, 2010,33(2):32-39.
No related articles found!
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938