Please wait a minute...
Data Analysis and Knowledge Discovery  2024, Vol. 8 Issue (4): 64-75    DOI: 10.11925/infotech.2096-3467.2023.0158
Current Issue | Archive | Adv Search |
Review of Term Recognition Studies Based on Deep Learning
Ruan Guangce,Zhong Jinghan,Zhang Yidi()
Department of Information Management, East China Normal University, Shanghai 200062, China
Download: PDF (934 KB)   HTML ( 4
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper reviews the current developments and challenges facing term recognition studies based on deep learning. [Coverage] We searched the 中国知网 and the Web of Science using queries of 主题=“术语识别”+“术语抽取”, and subject = “(extract terms OR term recognition OR technology detection OR relation classification) AND deep learning AND ner”. A total of 73 articles were retrieved. [Methods] We reviewed these studies on the general framework of deep learning-based term recognition, model selection, advantages and disadvantages of various models, and future development trends. [Results] Deep learning-based term recognition methods can be categorized into three major types: single neural network models, composite neural network models, and models combining deep learning. BiLSTM-CRF models are the mainstream method for term recognition, with BERT and its optimized models being recent research hotspots. In specific domains, multi-task models are preferred over neural network models, and the application of transfer learning and active learning has become a new research direction. [Limitations] We only conducted a structured analysis of different models and training results of existing studies, lacking a comparison of training effects of different models on the same dataset, requiring further research in the future. [Conclusion] Future research in deep learning-based term recognition should focus on term annotation patterns, integrating multidimensional features of terms, term recognition techniques for small or zero datasets, cross-domain model generalization, interpretability of results, and improvement of evaluation methods.

Key wordsTerm Recognition      Deep Learning      Text Mining     
Received: 03 March 2023      Published: 15 March 2024
ZTFLH:  TP18  
  G35  
Corresponding Authors: Zhang Yidi, ORCID: 0009-0003-1356-6150, E-mail:dee_zhang1022@163.com。   

Cite this article:

Ruan Guangce, Zhong Jinghan, Zhang Yidi. Review of Term Recognition Studies Based on Deep Learning. Data Analysis and Knowledge Discovery, 2024, 8(4): 64-75.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2023.0158     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2024/V8/I4/64

A General Framework for Term Recognition Based on Deep Learning
模型 原理 特点
CNN 通过卷积操作从局部信息中提取更高级别的特征,分类器负责输出字向量的位置信息[15] 加强学习语义的局部特征和潜在信息,难以捕捉长信息
RNN 引入“循环”思想处理序列文本,可以利用上下文信息预测当前输出[24] 捕获过去短期的信息,使语义学习更加准确,但是容易出现梯度消失或爆炸的问题
BiLSTM 引入细胞状态,增加输入门、遗忘门、有选择地控制信息[28] 既能解决短期依赖问题,又能处理长期依赖问题
Attention 保留LSTM编码器的输出结果,再通过计算权重的方法选择性学习序列信息输出[29] 打破模型的编码器和编码器都依赖于一个固定长度的向量,专注最相关的信息
BERT 进行深度的双向特征编码,通过随机掩码的方式,结合上下文信息进行模型训练[30] 适合处理大数据集,训练时间大大缩短,识别多义词实体以及表征句子结构存在优势
Principles and Characteristics of Single Deep Learning Model Completing Term Recognition Task
模型 时间 应用领域 数据集 性能指标 贡献
RNN 2015[24] 生物 GENIA3.02 F1:0.82(比CRF提升0.07) 在未分割的文本上获取句子中更广义的信息
BiLSTM 2018[43] 医疗事件 Mayo Clinic的医疗笔记、病例 准确率:0.88(比CRF提升0.15) 融合单词向量、词性信息,可以拓展到其他领域实验
SpanBERT 2020[44] 自然语言处理 GLUE F1:0.95(比BERT提升0.2) 通过Masking连续的随机跨度,在问题和共同参考解决的任务中表现良好
BiLSTM-CRF 2018[45] 中医临床 《全国名医验案类方》 F1:0.75(比LSTM提升0.07) 症状的组成要素融入了额外的字符级别特征
Representative Literatures of a Single Neural Network for Term Recognition
模型 原理 特点
BiLSTM-Attention BiLSTM获取序列上下文特征;Attention注意力机制对BiLSTM提取出序列信息进行加权变换;Softmax输出结果 既考虑了文本上下文信息,又有效地突出重点信息,能够获得更加丰富的语义特征
CNN-BiLSTM CNN层对字向量进行卷积和池化,抽取字符级向量;
BiLSTM层提取文本特征,获取上下文信息
相较于基础模型,CNN算法能够很好地描述数据的局部特征,对于特殊字符的识别效果较好,可全面地捕获文本信息
BERT-BiLSTM BERT进行文本表示;BiLSTM进行特征提取 相较于基础模型,能够对序列及字符的语义特征进行建模、捕获序列及字符的特征,在识别多义词实体以及表征句子结构方面表现突出
CNN-BiLSTM-Attention-LSTM CNN获得字符特征;BiLSTM获取序列特征;Attention注意力机制捕获依赖关系;LSTM进行解码输出 考虑到了文本权重分布的差异,解码器的训练速度更快
BERT-Attention-MCCNN[48] BERT产生动态词向量;Attention注意力机制学习词汇权重;残差单元构成MCCNN,学习表达关系的语义;Softmax输出结果 缓解静态词向量无法区分一词多义、未考虑单词权重从而长句子提取效果差、模型复杂等的问题
Principles and Characteristics of Multiple Deep Learning Models Fusion
文献模型 时间 应用领域 数据集 性能指标 贡献
CNN-BiLSTM-CRF 2018[49] 计算机文献 中国知网 F1:0.78(比BiLSTM- CRF提升0.03) 对GloVe和Word2Vec两种词嵌入模型进行比较,GloVe表现更好
DCNN-BiLSTM-CRF 2021[50] 煤炭装置 HAZOP F1:0.886(比BiLSTM- CRF提升0.18) 解决了专业领域词语复杂、一词多义、嵌套难以识别问题
CNN-Attention-
BiLSTM
2022[59] 司法领域负面案件 新浪微博、Github等网站的舆情信息 F1:0.89(比BiLSTM
Attention提升0.08)
CNN模型对局部信息进行提取可降低识别冗余信息影响,由于BERT预训练模型分词结构固定,不适用于本任务
Dynamic-att-BiLSTM-LSTM 2021[60] 社区文本 Semeval-2018, AlienVault,WeLive, Amazon -Related Blogs F1:0.87(比BiLSTM-CRF提升0.47) 提出了一个对抗性主动学习框架,增量地为选择有信息的样本,准确率提升明显
BERT-BiLSTM-CRF 2019[53] 临床病例 中文临床乳腺癌笔记 F1:0.967 在英文的融合的数据文本上BERT提升了模型的语义理解
BERT-BiLSTM-CRF 2022[54] 学术文献 Semantic Scholar英文文献 F1:0.32 算法识别模型可以有效推动算法进化网络构建和算法检索与追踪方面的工作
TFT-BERT-BiLSTM-CRF 2021[56] 方志知识图谱 1998年人民日报数据集和微软亚洲研究院(MSRA)数据集 F1:0.86(比BERT-BiLSTM-Softmax提升0.50) 使用迁移学习,解决语料标注冷启动问题,BERT相比其他方法预测结果F1值提升了约30%
BERT-BiLSTM-GCN
-CRF
2021[48] 非遗传统戏剧 百度百科和非物质文化遗产官网 F1:0.904(比Baseline提升0.590) 使用图卷积网络获取长距离句子特征,构建非遗传统戏剧术语库
Representative Literatures of Fusion Neural Network for Term Recognition
General Principles of Multi-task Learning
General Principles of Transfer Learning
发布时间 名称 发布机构 模型 术语抽取算法 资源下载
2021 CBLUE 中文信息学会医疗健康与生物信息处理专业委员 以BERT为基础的11种预训练模型 采用现实世界噪声数据,以BERT为代表的11种中文预训练模型,完成包括医学文本信息抽取、术语标准化、文本分类和问答4大类经典任务 https://github.com/CBLUEbenchmark/CBLUE
2019 ERNIE 清华大学、华为 BERT 将词汇、句法和知识信息与BERT模型相结合;可针对具体任务进行微调 https://github.com/thunlp/ERNIE
2019 K-BERT 北京大学、北京师范大学、腾讯 BERT 将知识图谱三元组转换为句子树,采用BERT实现临床医学病例和药物识别 https://github.com/autoliuweijie/K-BERT
2019 BioBERT 韩国高丽大学、Naver BERT 在英文维基百科和BooksCorpus进行BERT预训练并初始化BioBERT;在生物医学领域语料库(PubMed和PMC)上进行预训练并在下游任务微调 https://github.com/dmis-lab/BioBERT
2019 LSTM Voter 法兰克福大学 (Char-BiLSTM/Char-ATT)-BiLSTM-CRF 结合5个NER工具训练结果,利用Attention构建的字符级特征;BiLSTM学习上下文信息,输出标签预测概率;CRF获取标注序列 https://github.com/texttechnologylab/LSTMVoter
2018 Multi-BioNER 伊利诺伊大学、南加州大学、斯坦福大学 BiLSTM-CRF BiLSTM构建字符和词嵌,BiLSTM层学习上下文信息;CRF获取标注序列 https://github.com/yuzhimanhua/Multi-BioNER
2018 Collabo Net 韩国高丽大学 CNN-BiLSTM-CRF 使用CNN构建字符级单词嵌入;BiLSTM学习上下文信息,输出标签预测概率;CRF获取标注序列 https://github.com/wonjininfo/CollaboNet
Part of the Open Source Term Identification Models
[1] Zhang Z Q, Gao J, Ciravegna F. SemRe-Rank: Improving Automatic Term Extraction By Incorporating Semantic Relatedness With Personalised PageRank[J]. ACM Transactions on Knowledge Discovery from Data, 2018, 12(5): 57.
[2] Zadeh B Q, Handschuh S. Evaluation of Technology Term Recognition with Random Indexing[C]// Proceedings of the 9th International Conference on Language Resources and Evaluation. 2014: 4027-4032.
[3] 刘建华, 张智雄, 徐健, 等. 自动术语识别——对科技文献进行文本挖掘的重要技术方法[J]. 现代图书情报技术, 2008, 24(8): 12-17.
[3] (Liu Jianhua, Zhang Zhixiong, Xu Jian, et al. Automatic Term Recognition——An Important Method for Text Mining on Scientific Literature[J]. New Technology of Library and Information Service, 2008, 24(8): 12-17.)
[4] 丁君军, 郑彦宁, 化柏林. 基于规则的学术概念属性抽取[J]. 情报理论与实践, 2011, 34(12): 10-14, 33.
[4] (Ding Junjun, Zheng Yanning, Hua Bolin. Extraction of Academic Concept Attribute Based on Rules[J]. Information Studies: Theory & Application, 2011, 34(12): 10-14, 33.)
[5] 刘胜奇, 朱东华. TValue术语抽取法[J]. 情报学报, 2013, 32(11): 1164-1173.
[5] (Liu Shengqi, Zhu Donghua. Automatic Term Extraction Based on TValue[J]. Journal of the China Society for Scientific and Technical Information, 2013, 32(11): 1164-1173.)
[6] 李丽双, 王意文, 黄德根. 基于信息熵和词频分布变化的术语抽取研究[J]. 中文信息学报, 2015, 29(1): 82-87.
[6] (Li Lishuang, Wang Yiwen, Huang Degen. Term Extraction Based on Information Entropy and Word Frequency Distribution Variety[J]. Journal of Chinese Information Processing, 2015, 29(1): 82-87.)
[7] Lossio-Ventura J A, Jonquet C, Roche M, et al. Biomedical Terminology Extraction: A New Combination of Statistical and Web Mining Approaches[C]// Proceedings of JADT 2014: 12es Journées Internationales d'Analyse statistique des Données Textuelles. 2014: 421-432.
[8] Frantzi K, Ananiadou S, Mima H. Automatic Recognition of Multi-word Terms: The C-Value/Nc-Value Method[J]. International Journal on Digital Libraries, 2000, 3(2): 115-130.
[9] Astrakhantsev N. Automatic Term Acquisition from Domain-Specific Text Collection by Using Wikipedia[J]. Proceedings of the Institute for System Programming of RAS, 2014, 26(4): 7-20.
[10] Lossio-Ventura J A, Jonquet C, Roche M, et al. Yet Another Ranking Function for Automatic Multiword Term Extraction[C]// Proceedings of the 9th International Conference on Natural Language Processing. 2014: 52-64.
[11] 庞贝贝, 苟娟琼, 张雷, 等. 基于主题分析和语用情境融合的多义术语识别研究[J]. 情报理论与实践, 2022, 45(1): 177-186.
doi: 10.16353/j.cnki.1000-7490.2022.01.023
[11] (Pang Beibei, Gou Juanqiong, Zhang Lei, et al. Research on Polysemy Recognition Based on Topic Analysis and Usage Context Fusion[J]. Information Studies: Theory & Application, 2022, 45(1): 177-186.)
doi: 10.16353/j.cnki.1000-7490.2022.01.023
[12] Nugumanova A, Akhmed-Zaki D, Mansurova M, et al. NMF-Based Approach to Automatic Term Extraction[J]. Expert Systems with Applications, 2022, 199: 117179.
[13] 张华, 叶娜, 周俏丽, 等. 基于分类策略的术语识别系统融合[J]. 小型微型计算机系统, 2015, 36(2): 385-390.
[13] (Zhang Hua, Ye Na, Zhou Qiaoli, et al. Classification Strategy Based Term Recognition Systems Combination[J]. Journal of Chinese Computer Systems, 2015, 36(2): 385-390.)
[14] 屈鹏, 王惠临. 专利信息服务中的术语抽取[J]. 情报科学, 2015, 33(9): 66-71.
[14] (Qu Peng, Wang Huilin. Term Extraction in Patent Information Services[J]. Information Science, 2015, 33(9): 66-71.)
[15] Wang R, Liu W, McDonald C. Featureless Domain-Specific Term Extraction with Minimal Labelled Data[C]// Proceedings of the Australasian Language Technology Association Workshop 2016. 2016: 103-112.
[16] Terryn A R, Hoste V, Lefever E. Tagging Terms in Text: A Supervised Sequential Labelling Approach to Automatic Term Extraction[J]. Terminology, 2022, 28(1): 157-189.
[17] 张雪, 孙宏宇, 辛东兴, 等. 自动术语抽取研究综述[J]. 软件学报, 2020, 31(7): 2062-2094.
[17] (Zhang Xue, Sun Hongyu, Xin Dongxing, et al. Survey on Automatic Term Extraction Research[J]. Journal of Software, 2020, 31(7): 2062-2094.)
[18] 袁劲松, 张小明, 李舟军. 术语自动抽取方法研究综述[J]. 计算机科学, 2015, 42(8): 7-12.
[18] (Yuan Jinsong, Zhang Xiaoming, Li Zhoujun. Survey of Automatic Terminology Extraction Methodologies[J]. Computer Science, 2015, 42(8): 7-12.)
[19] 胡雅敏, 吴晓燕, 陈方. 基于机器学习的技术术语识别研究综述[J]. 数据分析与知识发现, 2022, 6(2/3): 7-17.
[19] (Hu Yamin, Wu Xiaoyan, Chen Fang. Review of Technology Term Recognition Studies Based on Machine Learning[J]. Data Analysis and Knowledge Discovery, 2022, 6(2/3): 7-17.)
[20] 祝清松, 冷伏海. 自动术语识别存在的问题及发展趋势综述[J]. 图书情报工作, 2012, 56(18): 104-109.
[20] (Zhu Qingsong, Leng Fuhai. Existing Problems and Developing Trends of Automatic Term Recognition[J]. Library and Information Service, 2012, 56(18): 104-109.)
[21] Li J, Sun A, Han J, et al. A Survey on Deep Learning for Named Entity Recognition[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(1): 50-70.
[22] Song B S, Li F, Liu Y S, et al. Deep Learning Methods for Biomedical Named Entity Recognition: A Survey and Qualitative Comparison[J]. Briefings in Bioinformatics, 2021, 22(6): bbab282.
[23] 张卫, 王昊, 邓三鸿, 等. 面向数字人文的古诗文本情感术语抽取与应用研究[J]. 中国图书馆学报, 2021, 47(4): 113-131.
[23] (Zhang Wei, Wang Hao, Deng Sanhong, et al. Sentiment Term Extraction and Application of Chinese Ancient Poetry Text for Digital Humanities[J]. Journal of Library Science in China, 2021, 47(4): 113-131.)
[24] Li L S, Jin L K, Huang D G. Exploring Recurrent Neural Networks to Detect Named Entities from Biomedical Text[C]// Proceedings of Chinese National Conference on Chinese Computational Linguistics, International Symposium on Natural Language Processing Based on Naturally Annotated Big Data. 2015: 279-290.
[25] Khosla K, Jones R, Bowman N. Featureless Deep Learning Methods for Automated Key-Term Extraction[EB/OL]. [2023-02-08]. https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/reports/custom/15848334.pdf.
[26] Kucza M, Niehues J, Zenkel T, et al. Term Extraction via Neural Sequence Labeling a Comparative Evaluation of Strategies Using Recurrent Neural Networks[C]// Proceedings of the Interspeech 2018. 2018: 2072-2076.
[27] 赵洪, 王芳. 理论术语抽取的深度学习模型及自训练算法研究[J]. 情报学报, 2018, 37(9): 923-938.
[27] (Zhao Hong, Wang Fang. A Deep Learning Model and Self-Training Algorithm for Theoretical Terms Extraction[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(9): 923-938.)
[28] 肖连杰, 孟涛, 王伟, 等. 基于深度学习的情报分析方法识别研究——以安全情报领域为例[J]. 数据分析与知识发现, 2019, 3(10): 20-28.
[28] (Xiao Lianjie, Meng Tao, Wang Wei, et al. Entity Recognition of Intelligence Method Based on Deep Learning: Taking Area of Security Intelligence for Example[J]. Data Analysis and Knowledge Discovery, 2019, 3(10): 20-28.)
[29] Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 6000-6010.
[30] Venugopalan M, Gupta D. An Enhanced Guided LDA Model Augmented with BERT Based Semantic Strength for Aspect Term Extraction in Sentiment Analysis[J]. Knowledge-Based Systems, 2022, 246: 108668.
[31] Gao Y Z, Yuan Y. Feature-Less End-to-End Nested Term Extraction[C]// Proceedings of CCF International Conference on Natural Language Processing and Chinese Computing. 2019: 607-616.
[32] Huang Z H, Xu W, Yu K. Bidirectional LSTM-CRF Models for Sequence Tagging[OL]. arXiv Preprint, arXiv: 1508.01991.
[33] Lample G, Ballesteros M, Subramanian S, et al. Neural Architectures for Named Entity Recognition[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. 2016: 260-270.
[34] Luo H S, Li T R, Liu B, et al. Improving Aspect Term Extraction with Bidirectional Dependency Tree Representation[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(7): 1201-1212.
[35] Lyu X R, Lyu X Q, Sun F S, et al. Patent Domain Terminology Extraction Based on Multi-feature Fusion and BiLSTM-CRF Model[C]// Proceedings of FSDM 2018. 2018: 495-500.
[36] 王昊, 邓三鸿, 苏新宁, 等. 基于深度学习的情报学理论及方法术语识别研究[J]. 情报学报, 2020, 39(8): 817-828.
[36] (Wang Hao, Deng Sanhong, Su Xinning, et al. A Study on Chinese Terminology Recognition of Theory and Method from Information Science: Based on Deep Learning[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(8): 817-828.)
[37] 徐飞, 叶文豪, 宋英华. 基于BiLSTM-CRF模型的食品安全事件词性自动标注研究[J]. 情报学报, 2018, 37(12): 1204-1211.
[37] (Xu Fei, Ye Wenhao, Song Yinghua. Part-of-Speech Automated Annotation of Food Safety Events Based on BiLSTM-CRF[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(12): 1204-1211.)
[38] Li P L, Yuan Z M, Tu W B, et al. Medical Knowledge Extraction and Analysis from Electronic Medical Records Using Deep Learning[J]. Chinese Medical Sciences Journal, 2019, 34 (2): 133-139.
[39] 冯鸾鸾, 李军辉, 李培峰, 等. 面向国防科技领域的技术和术语识别方法研究[J]. 计算机科学, 2019, 46(12): 231-236.
doi: 10.11896/jsjkx.190300069
[39] (Feng Luanluan, Li Junhui, Li Peifeng, et al. Technology and Terminology Detection Oriented National Defense Science[J]. Computer Science, 2019, 46(12): 231-236.)
doi: 10.11896/jsjkx.190300069
[40] Phongwattana T, Chan J H. Development of Biomedical Corpus Enlargement Platform Using BERT for Bio-entity Recognition[C]// Proceedings of International Conference on Neural Information Processing. 2019: 454-463.
[41] 刘浏, 秦天允, 王东波. 非物质文化遗产传统音乐术语自动抽取[J]. 数据分析与知识发现, 2020, 4(12): 68-75.
[41] (Liu Liu, Qin Tianyun, Wang Dongbo. Automatic Extraction of Traditional Music Terms of Intangible Cultural Heritage[J]. Data Analysis and Knowledge Discovery, 2020, 4(12): 68-75.)
[42] Liu W J, Zhou P, Zhao Z, et al. K-BERT: Enabling Language Representation with Knowledge Graph[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2020: 2901-2908.
[43] 侯伟涛, 姬东鸿. 基于Bi-LSTM的医疗事件识别研究[J]. 计算机应用研究, 2018, 35(7): 1974-1977.
[43] (Hou Weitao, Ji Donghong. Research on Clinic Event Recognition Based Bi-LSTM[J]. Application Research of Computers, 2018, 35(7): 1974-1977.)
[44] Joshi M, Chen D Q, Liu Y H, et al. SpanBERT: Improving Pre-training by Representing and Predicting Spans[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 64-77.
[45] 李明浩, 刘忠, 姚远哲. 基于LSTM-CRF的中医医案症状术语识别[J]. 计算机应用, 2018, 38(S2): 42-46.
[45] (Li Minghao, Liu Zhong, Yao Yaozhe. LSTM-CRF Based Symptom Term Recognition on Traditional Chinese Medical Case[J]. Journal of Computer Applications, 2018, 38(S2): 42-46.)
[46] Desimone R. Neural Mechanisms of Selective Visual Attention[J]. Annual Review of Neuroscience, 1995, 18: 193-222.
pmid: 7605061
[47] 吴俊, 程垚, 郝瀚, 等. 基于BERT嵌入BiLSTM-CRF模型的中文专业术语抽取研究[J]. 情报学报, 2020, 39(4): 409-418.
[47] (Wu Jun, Cheng Yao, Hao Han, et al. Automatic Extraction of Chinese Terminology Based on BERT Embedding and BiLSTM-CRF Model[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(4): 409-418.)
[48] 任秋彤, 王昊, 熊欣, 等. 融合GCN远距离约束的非遗戏剧术语抽取模型构建及其应用研究[J]. 数据分析与知识发现, 2021, 5(12): 123-136.
[48] (Ren Qiutong, Wang Hao, Xiong Xin, et al. Extracting Drama Terms with GCN Long-Distance Constrain[J]. Data Analysis and Knowledge Discovery, 2021, 5(12): 123-136.)
[49] Han X W, Xu L Z, Qiao F. CNN-BiLSTM-CRF Model for Term Extraction in Chinese Corpus[C]// Proceedings of International Conference on Web Information Systems and Applications. 2018: 267-274.
[50] Peng L F, Gao D, Bai Y J. A Study on Standardization of Security Evaluation Information for Chemical Processes Based on Deep Learning[J]. Processes, 2021, 9(5): 832.
[51] 马建红, 张亚梅, 姚爽, 等. 基于BLSTM_attention_CRF模型的新能源汽车领域术语抽取[J]. 计算机应用研究, 2019, 36(5): 1385-1389, 1395.
[51] (Ma Jianhong, Zhang Yamei, Yao Shuang, et al. Terminology Extraction for New Energy Vehicle Based on BiLSTM_Attention_CRF Model[J]. Application Research of Computers, 2019, 36(5): 1385-1389, 1395.)
[52] 李焕. 基于深度学习与主动学习的中医术语识别研究[D]. 北京: 北京工业大学, 2019.
[52] (Li Huan. Research of Chinese Medicine Terminology Recognition Based on Deep Learning and Active Learning[D]. Beijing: Beijing University of Technology, 2019.)
[53] Zhang X H, Zhang Y Y, Zhang Q, et al. Extracting Comprehensive Clinical Information for Breast Cancer Using Deep Learning Methods[J]. International Journal of Medical Informatics, 2019, 132: 103985.
[54] 翟羽佳, 田静文, 赵玥. 基于BERT-BiLSTM-CRF模型的算法术语抽取与创新演化路径构建研究[J]. 情报科学, 2022, 40(4): 71-78.
[54] (Zhai Yujia, Tian Jingwen, Zhao Yue. Algorithm Term Extraction and Innovation Evolution Path Construction Based on BERT-BiLSTM-CRF Model[J]. Information Science, 2022, 40(4): 71-78.)
[55] 李贞贞, 钟永恒, 王辉, 等. 基于深度学习与统计信息的领域术语抽取方法研究[J]. 数据与计算发展前沿, 2022, 4(2): 87-98.
[55] (Li Zhenzhen, Zhong Yongheng, Wang Hui, et al. Research on Domain Term Extraction Method Based on Deep Learning and Statistical Information[J]. Frontiers of Data & Computing, 2022, 4(2): 87-98.)
[56] 熊欣, 王昊, 邓三鸿. 面向方志知识图谱的术语抽取模型迁移学习研究[J]. 情报理论与实践, 2021, 44(4): 176-184.
[56] (Xiong Xin, Wang Hao, Deng Sanhong. A Study on Term Extraction Model with Transfer Learning for Knowledge Graph of Local Chronicles[J]. Information Studies: Theory & Application, 2021, 44(4): 176-184.)
[57] 郑光敏, 易天源, 唐东昕, 等. 基于BERT-BiLSTM-CRF模型的中国民族药知识抽取[J]. 武汉大学学报(理学版), 2021, 67(5): 393-402.
[57] (Zheng Guangmin, Yi Tianyuan, Tang Dongxin, et al. The Chinese Ethnic Medicine Knowledge Extraction Based on BERT-BiLSTM-CRF Model[J]. Journal of Wuhan University(Natural Science Edition), 2021, 67(5): 393-402.)
[58] 张泽锋, 毛存礼, 余正涛, 等. 融入领域术语词典的司法舆情敏感信息识别[J]. 中文信息学报, 2022, 36(9): 76-83, 92.
[58] (Zhang Zefeng, Mao Cunli, Yu Zhengtao, et al. Sensitive Judicial Public Opinion Information Recognition with the Domain Terminology Dictionary[J]. Journal of Chinese Information Processing, 2022, 36(9): 76-83, 92.)
[59] Caruana R. Multitask Learning[J]. Machine Learning, 1997, 28(1): 41-75.
[60] Li T, Hu Y, Ju A, et al. Adversarial Active Learning for Named Entity Recognition in Cybersecurity[J]. Computers, Materials & Continua, 2021, 66(1):407-420.
[61] Crichton G, Pyysalo S, Chiu B, et al. A Neural Network Multi-Task Learning Approach to Biomedical Named Entity Recognition[J]. BMC Bioinformatics, 2017, 18(1): 368.
doi: 10.1186/s12859-017-1776-8 pmid: 28810903
[62] Hong S K, Lee J G. DTranNER: Biomedical Named Entity Recognition with Deep Learning-Based Label-Label Transition Model[J]. BMC Bioinformatics, 2020, 21: 53.
doi: 10.1186/s12859-020-3393-1 pmid: 32046638
[63] Greenberg N, Bansal T, Verga P, et al. Marginal Likelihood Training of BiLSTM-CRF for Biomedical Named Entity Recognition from Disjoint Label Sets[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 2824-2829.
[64] Peng Y F, Chen Q Y, Lu Z Y. An Empirical Study of Multi-task Learning on BERT for Biomedical Text Mining[C]// Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing. 2020: 205-214.
[65] Zhuang F Z, Luo P, Xiong H, et al. Cross-Domain Learning from Multiple Sources: A Consensus Regularization Perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(12): 1664-1678.
[66] Giorgi J M, Bader G D. Transfer Learning for Biomedical Named Entity Recognition with Neural Networks[J]. Bioinformatics, 2018, 34(23): 4087-4094.
doi: 10.1093/bioinformatics/bty449 pmid: 29868832
[67] le Guillarme N, Thuiller W. TaxoNERD: Deep Neural Models for the Recognition of Taxonomic Entities in the Ecological and Evolutionary Literature[J]. Methods in Ecology and Evolution, 2022, 13(3): 625-641.
[68] 刘宇飞, 尹力, 张凯, 等. 基于深度迁移学习的技术术语识别——以数控系统领域为例[J]. 情报杂志, 2019, 38(10): 168-175.
[68] (Liu Yufei, Yin Li, Zhang Kai, et al. Deep Transfer Learning for Technical Term Extraction—A Case Study in Computer Numerical Control System[J]. Journal of Intelligence, 2019, 38(10): 168-175.)
[69] 刘康, 钱旭, 王自强. 主动学习算法综述[J]. 计算机工程与应用, 2012, 48(34): 1-4, 22.
[69] (Liu Kang, Qian Xu, Wang Ziqiang. Survey on Active Learning Algorithms[J]. Computer Engineering and Applications, 2012, 48(34): 1-4, 22.)
[70] Liang G Q, Leung C W K. Improving Model Generalization: A Chinese Named Entity Recognition Case Study[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 2:Short Papers). 2021: 992-997.
[71] 张晗, 郭渊博, 李涛. 结合GAN与BiLSTM-Attention-CRF的领域命名实体识别[J]. 计算机研究与发展, 2019, 56(9): 1851-1858.
[71] (Zhang Han, Guo Yuanbo, Li Tao. Domain Named Entity Recognition Combining GAN and BiLSTM-Attention-CRF[J]. Journal of Computer Research and Development, 2019, 56(9): 1851-1858.)
[72] 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321-332.
[72] (Wang Kunfeng, Gou Chao, Duan Yanjie, et al. Generative Adversarial Networks: The State of the Art and Beyond[J]. Acta Automatica Sinica, 2017, 43(3): 321-332.)
[73] Fan F L, Xiong J J, Li M Z, et al. On Interpretability of Artificial Neural Networks: A Survey[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5(6): 741-760.
[1] Ma Zhiyuan, Gao Ying, Zhang Qiang, Zhou Hong, Li Bing, Tao Wan. Research on the Semantic and Structure Fusion-Based Knowledge Graph Completion Model[J]. 数据分析与知识发现, 2024, 8(4): 39-49.
[2] He Guoxiu, Ren Jiayu, Li Zongyao, Lin Chenxi, Yu Haiyan. Revisiting Deep Learning-based Rumor Detection Models with Interpretable Tools[J]. 数据分析与知识发现, 2024, 8(4): 1-13.
[3] Zhang Zhijian, Xia Sudi, Liu Zhenghao. Seal Recognition and Application Based on Multi-feature Fusion Deep Learning[J]. 数据分析与知识发现, 2024, 8(3): 143-155.
[4] Zhang Xiongtao, Zhu Na, Guo Yuhui. A Survey on Session-Based Recommendation Methods with Graph Neural Network[J]. 数据分析与知识发现, 2024, 8(2): 1-16.
[5] Li Hui, Hu Yaohua, Xu Cunzhen. Personalized Recommendation Algorithm with Review Sentiments and Importance[J]. 数据分析与知识发现, 2024, 8(1): 69-79.
[6] Xiang Zhuoyuan, Chen Hao, Wang Qian, Li Na. Few-Shot Language Understanding Model for Task-Oriented Dialogues[J]. 数据分析与知识发现, 2023, 7(9): 64-77.
[7] Cao Kun, Wu Xinnian, Jin Junbao, Zheng Yurong, Fu Shuang. Identification of Emerging Technology Based on Co-words and Node2Vec Representation Learning[J]. 数据分析与知识发现, 2023, 7(9): 89-99.
[8] Nie Hui, Cai Ruisheng. Online Doctor Recommendation System with Attention Mechanism[J]. 数据分析与知识发现, 2023, 7(8): 138-148.
[9] Li Guangjian, Yuan Yue. Review of Knowledge Elements Extraction in Scientific Literature Based on Deep Learning[J]. 数据分析与知识发现, 2023, 7(7): 1-17.
[10] Wang Nan, Wang Qi. Evaluating Student Engagement with Deep Learning[J]. 数据分析与知识发现, 2023, 7(6): 123-133.
[11] Wu Jialun, Zhang Ruonan, Kang Wulin, Yuan Puwei. Deep Learning Model of Drug Recommendation Based on Patient Similarity Analysis[J]. 数据分析与知识发现, 2023, 7(6): 148-160.
[12] Wang Xiaofeng, Sun Yujie, Wang Huazhen, Zhang Hengzhang. Construction and Verification of Type-Controllable Question Generation Model Based on Deep Learning and Knowledge Graphs[J]. 数据分析与知识发现, 2023, 7(6): 26-37.
[13] Liu Yang, Zhang Wen, Hu Yi, Mao Jin, Huang Fei. Hotel Stock Prediction Based on Multimodal Deep Learning[J]. 数据分析与知识发现, 2023, 7(5): 21-32.
[14] Huang Xuejian, Ma Tinghuai, Wang Gensheng. Detecting Weibo Rumors Based on Hierarchical Semantic Feature Learning Model[J]. 数据分析与知识发现, 2023, 7(5): 81-91.
[15] Li Jialei, An Peijun, Xiao Xiantao. Review of Methods for Interdisciplinary Topic Identification[J]. 数据分析与知识发现, 2023, 7(4): 1-15.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn