Advanced Search

数据分析与知识发现, 2020, 4(5): 15-26 doi: 10.11925/infotech.2096-3467.2019.1376

综述评介

网络在线信任影响因素研究综述*

张毅, 杨奕,,, 邓雯

华中科技大学公共管理学院 武汉 430074

A Systematic Review of Factors Influencing Online Trust

Zhang Yi, Yang Yi,,, Deng Wen

College of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China

通讯作者: 杨奕,ORCID:0000-0003-4275-8277,E-mail:yiyangcpa@hust.edu.cn

收稿日期: 2019-12-27   修回日期: 2020-01-15   网络出版日期: 2020-05-25

基金资助: *本文系国家社会科学基金重大项目“智慧社会下我国新型社会信用体系构建研究”.  19ZDA104
中央高校基本科研业务费资助项目“区块链与基于技术系统信任的政府治理创新”的研究成果之一.  HUST2017WKZDJC005

Received: 2019-12-27   Revised: 2020-01-15   Online: 2020-05-25

摘要

【目的】 理清网络在线信任影响因素,洞察信任者与被信任者需求,发掘内外部环境的影响差异,解释各影响因子的作用效应,精准提升用户信任度。【文献范围】 在Web of Science、CNKI等数据库中分别以“online trust”、 “network trust”、“system trust”和“在线信任”、“网络信任”、“系统信任”等关键词进行检索,通过筛选共获得代表性文献91篇。【方法】 回顾网络在线信任发展历程与概念内涵, 系统梳理该领域主要影响因素指标。【结果】 当前研究热点集中于信任者特征、被信任对象特征、技术平台、外部环境等4项影响因素及影响效应,以及新兴技术对在线信任的影响与重构。其主题演化趋势同信任理论与信息技术相结合的发展脉络密切相关。【局限】 仅将影响因素和评价指标作为探讨核心,未涉及相关领域其他方面。【结论】 分析当前研究情境维度及呈现特征,该领域未来仍具有较大探索空间,可尝试从理论模型、研究方法、研究视角等层面持续优化。

关键词: 电子政务 ; 网络在线信任 ; 研究评述

Abstract

[Objective] This paper tries to identify the influencing factors of online trust, which helps us gain more insights on user’s needs, as well as impacts of internal and external environments. It explains the effects of influencing factors, and improves online trust.[Coverage] We searched Web of Science, CNKI and other databases with “online trust”, “network trust”, or “system trust”, and retrieved 91 representative literature.[Methods] We reviewed the developments and concepts of online trust, and explored research on main influencing factors.[Results] Online trust research focused on the trustors, the trusted objects, the technology platforms and the external environments, as well as their effects. The emerging technologies also influenced online trust and reconstruction research. The theme evolution trends were closely related to the developments of trust theory and technology.[Limitations] This study only discussed the influencing factors and evaluation metrics.[Conclusions] Online trust research could be optimized from theoretical model, as well as research methods and perspectives.

Keywords: E-government ; Online Trust ; Research Review

PDF (667KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张毅, 杨奕, 邓雯. 网络在线信任影响因素研究综述*. 数据分析与知识发现[J], 2020, 4(5): 15-26 doi:10.11925/infotech.2096-3467.2019.1376

Zhang Yi. A Systematic Review of Factors Influencing Online Trust. Data Analysis and Knowledge Discovery[J], 2020, 4(5): 15-26 doi:10.11925/infotech.2096-3467.2019.1376

1 引言

随着20世纪80年代网络技术兴起,信息革命对公共管理及社会发展带来众多机遇挑战,政府部门开始尝试应用计算机技术辅助基础的政务活动[1]。“电子政务应用”对于政府行政效率的提升与功能的改进作用逐渐受到各国政府的推崇,并不断尝试探索该模式下的新型场景。为进一步拓展政府与公众间的交流渠道,不同类型的政务网站开始普及。网络在社会活动中的协同服务和合作共享等职能,使得物理世界中的社会关系不再受到时间和空间的约束。互联网技术带来的“数据民主化”推动政府建设与治理更加高效、创新和透明[2],在公共服务中得到越来越多的重视。

但在实际运行中,部分政府对于电子政务建设投入极大热情和资源,公众却因为种种原因不愿接受新的方式,如隐私泄露、信息安全、网络欺诈等潜在风险不断提升。互联网的使用不仅取决于人们对其提供的预估收益,而且取决于网络本身和外部环境等多种因素的影响[3]。面对政府热情与公众冷漠的供求差距,学术界与实践界开始关注公众使用行为与感受的影响因素。由于在网络互动中处于相对劣势,人们有理由怀疑政府网站这种间接的人机服务方式更有利于政府的机会主义行为。此种对于政府网站在线服务方式的不信任,导致网站难以发挥其正常功能。基于网络中存在的种种不确定性和风险性,信任便成为人们接受并持续使用政府网站的重要因素之一。

网络中的信任也称为网络在线信任(Online Trust),作为一种重要的社会资本,其丰富的资本存量可保证社会的稳定秩序与良好治理,同时降低沟通成本、风险与不确定性,提高电子政务的应用效能,进而提升公众的使用意愿。基于当前网络在线信任度较低的现状,深入探究电子政务背景下的线上信任及影响因素具有重要的理论价值。为全面把握研究现状,本文选择国内外多种文献数据库进行调研,包括Web of Science、Elsevier ScienceDirect、SpringerLink、EBSCO、Emerald、Taylor & Francis、CNKI、万方和维普数据库等,分别检索主题、标题或关键词中含有“online trust”、“network trust”、“system trust”和“在线信任”、“网络信任”、“系统信任”的文献。检索日期截至2019年10月31日,在剔除重复和相关性较小的文献之后,共获得相关文献91篇。

通过对文献的内容分析发现,虽然有关网络在线信任的研究成果层出不穷,但大多集中于在线信任的实证研究和机制构建,仅有少数学者对在线信任的影响因素进行综述,不足以反映当下研究的总体概貌。因此,本研究从公共管理的视角出发,对当前网络在线信任的研究现状进行述评,分别对发展特征与内涵、影响因素、影响效应进行梳理和评析。以期通过把握相关研究的现状及趋势,为该领域的后续研究积累一定的理论基础。

2 网络在线信任的发展特征与内涵

20世纪初,德国社会学家Simmel率先开始针对信任问题系统研究,提出“离开了人们之间的一般性信任,社会自身将变成一盘散沙”[4],首次明确信任在社会生活中的重要作用。自20世纪50年代学界针对信任开展广泛研究,社会学、心理学、管理学、政治学等领域的学者纷纷关注相关问题,信任对于人类行为的重要程度也得到普遍认同,并于随后的70年代成为西方社会科学研究的热门话题。

信任产生于人们在进行社会活动时的个体表现,对一方的信任度评估通常根据历史的直接交互经验或多渠道的间接推荐信息。美国学者弗朗西斯·福山提出,信任恰如润滑剂,能使任何一个群体或组织的运转变得更加有效[5]。既然信任对于维持不同个体或组织间的合作关系具有重要影响,那么信任受到哪些因素的影响,或者说信任在怎样的前提下产生,是信任研究领域的基础性议题之一,也被称为“信任源”问题。纵观信任研究的发展历程,学者们的关注重点从传统社会的人际信任(或特殊信任)转向现代社会的制度信任(或普遍信任),并逐步发展到信息社会的系统信任(或算法信任),这种转变不仅包含信任对象的变化,也包含信任建立与维系模式的转变。信息技术的发展使得信任研究由线下转移到线上,部分学者开始聚焦于在线人际信任以及人与技术间的信任。网络交往是建立在信息技术基础上的一种新的交往方式,技术的发展使得网络在线的应用范围也越来越广泛。然而, 网络具有时空分离的特性致使交互双方无法面对面交流,进而导致信息泄露或风险增加,因此建立双方的信任关系成为网络交互成功的关键要素,也是影响在线交互发展的重要因素。

由于不同学科对信任进行研究致其概念存在长期不一致性,为此诸多学者都纷纷对信任的含义展开探索,希望能够形成一个通用的信任概念或框架。例如,Mayer等提出信任是不管一方对另一方的监视和控制能力如何,总是认为对方将按照对他重要的行为方式行事,并愿意将自己置于因他者的行为而容易受到攻击的状态[6];Luhmann认为信任是一种当人们必须与不确定性打交道时,减少人的行为复杂性的机制。当对其他人的行动不可能控制或不能充分了解时,人与人之间的相互作用就会变得复杂,而信任是一种能使人们对其行为产生理解的机制[7]。但是这些定义都是着眼于人对人或人对组织的信任范畴下的考量,包括“信任偏好”、“信任他人的信心”、“信任他人的打算”、“与信任相关的行为”。网络信任在于分析技术本身(主要是因特网)的信任关系,反映制度现象的信任建构,即系统信任建构,如网络系统的可靠性和安全性。因此,McKnight等首次提出电子商务背景下的信任概念模型,区分了信任信念和信任意图两种结构,信任信念是指网民相信网站供应商至少有一种特征对他是有利的,特征包括网站供应商的能力、善意、诚实和可预见性;信任意图是指即使网民无法控制网站供应商,仍然愿意或倾向于依赖他们[8]

综上所述,网络在线信任是将“信任”这一概念引入互联网环境的一种全新的信任形态,主要包含三种视角:

(1)网络在线信任是对互联网可信程度的一种线上技术的信任,通过计算机技术保证网络的信息安全;

(2)网络在线信任是一种体现在网络组织在网络活动中的“信誉”或“信用”,及其追求的用户信赖;

(3)从社会学角度出发,网络在线信任是社会人际信任的网际化表现,反映网络环境下人与人、人与组织或组织与组织间的信任关系。

3 网络在线信任的影响因素

网络交往是建立在信息技术基础上的一种新的交往方式,是人类社会交往史上的一项伟大变革。随着该技术的发展, 网络在线的应用范围也越来越广泛。研究网络在线信任的影响因素,有利于帮助网络提供者针对性地改善网络环境,提高使用者的信任水平,降低交往成本,并直接影响互联网服务的成功与否。当前,多数研究主要采用问卷调查、信任量表、模拟实验等研究方法,从信任者特征(如个体信任倾向、理念与态度、网络经验等)、被信任对象特征(如网络组织、组织声望、组织规模等)、技术平台特征(如技术平台体验、平台结构模式和传播特征等)、外部环境特征(如健全法律保障、网站监控机制、网络伦理道德风险等)等视角,探讨其对网络在线信任的促进或阻碍作用。

3.1 信任者特征因素

网络信任者是使用互联网服务或通过互联网从事在线行为的施信主体,负责包括政府的公共服务供给或商业领域的产品购买,最终都需要获得使用者或消费者认可。因此,在线信任者研究是该领域较早开展的研究内容之一。除了人口统计学特征对信任水平产生重要影响外,个体倾向性、网络经验、理念与态度等近年来成为主要研究趋势。

(1)个体信任的倾向性对信任的建立至关重要,Salam等研究发现,在信息匮乏的情况下,有些人会表现出较高的信任倾向性,有些则表现出较低的信任倾向性,两者对网络信任水平均具有预测作用[9]。Teo等的实验结果表明,一些网民在有限信息条件下会倾向于相信其他人或组织,而另一些需要通过更多的信息才能形成信任[10]。个体的信任倾向受其长期生活实践形成的一种非经验性因素影响,包含个体的性格与差异,也可能受到制度结构与具体情境的影响[11]。同时,针对个体倾向性,学界也存在不同的观点,例如Gefen的研究结果表明,人格特质的信任倾向越强,越容易信任对方[12];而Lee等则指出,个体倾向性为中介作用,网民对网络环境越陌生,个人倾向的调节作用越显著[13]

(2)信任者的理念与态度研究,主要对于用户交互的知识和专业技能等因素进行探索。在持续的网络交互作用下,人们能够增加对技术的理解,包括对性能的评估、计算机的兴趣[14]、知识的接受、使用的体验以及网络的信心[15],但是针对多个变量的交互机制是否产生有效作用,当前研究尚未能明确。

(3)对网络经验的研究表明,信任者可以通过提高网络操作经验[16]、在线参与程度[17]、网络界面熟悉程度[18],提升个体冒险感知水平和风险控制能力,进而影响在线信任水平。例如,Metzger在研究中将感知信任水平归因于个人的网络操作经验,即网络经验越丰富、操作越熟练,越能控制网络风险,网络信任水平也会越高[19]。相对经验缺乏者而言,网络经验丰富的使用者能够掌握更多信息,对于在线互动更具信心和能力;相反,会降低对互联网及其组织的信任程度[20]

与此同时,前期经验对信任的影响也引起学界的兴趣和争议。Aiken等的研究表明,用户前期体验的满意程度对信任不仅有正向关系,同时也存在负向关系[21],该现象主要源于初级、中级与高级用户的差异。早期操作经验会促使人们信任网络,但当网络经验达到较高水平时,互联网所积累的问题(如错误的知识、网络隐私泄露、网络安全等)反而会降低在线信任,呈现倒U字形曲线。影响信任者特征的因素如表1所示。

表1   信任者特征影响因素

Table 1  The Influencing Factors of Trustor

影响因素具体内容文献来源
个体倾向性先天信任倾向Salam等[9](2005); Teo等[10](2007)
个体的性格与差异,对人性的信心McKnight[11](2005)
制度结构与具体情境Lee等[13](2001); McKnight[11](2005)
个体的人格特质Gefen[12](2000)
理念与态度用户交互的知识和专业技能Hoffman等[3](1999)
对性能的评估,对计算机的兴趣Gefen等[14](2003)
对知识的接受,对使用的体验Van der Heijden等[15](2003)
网络经验过往的操作经验Corbitt等[16](2003); Metzger[19](2006); Koufaris等[20](2004)
在线参与程度Wang等[17](2008)
网络界面熟悉程度Siau等[18](2003)
个体感知水平和风险控制能力Metzger[19](2006)
前期体验的满意程度Aiken等[21](2006)

新窗口打开| 下载CSV


3.2 被信任对象特征因素

在线被信任对象主要包括网络组织和供应商。首先,被信任个体的线下活动会影响信任的形成,由于在线交互过程中人们无法面对面参与,网民的心理安全感持续降低,因此网络组织的线下运行质量会影响人们的线上信任水平[22];其次,在互联网操作中施信者对网站、网络组织或提供商本身的信任水平评估,也是当前研究的重点。

(1)网络组织自身特征。部分实证研究表明,组织自身特征影响信任水平。如网络组织的简介[23]、官方社交媒体账户及呈现形式[24],都为组织可信度提供了线索。完整的资料介绍[25]、值得信赖的照片和美观的头像[26],会增加基于视觉的信任。当供应商在某特征的声誉接近时尤其如此,发布一张令人印象深刻的图片高度影响信任者感知[27],也是对于“面孔作为网络互动的先决条件并创造信任效应”的合理解释。

(2)网络组织声望。网络交互中,施信者一般首先信任著名、有声望的供应商所搭建的网站[28]。一是根据其他网民的评价结果,对供应商口碑形成间接认知,如组织规模、品牌、知名度等[29];二是在亲身体验组织承诺与其实际表现之间进行对比,所产生对组织可靠性程度的直接评价,如组织的问题解决能力,是否诚信、正直且善意等。

值得注意的是,不少学者致力于网络组织声誉的构建研究,电子商务环境下部分成果对于电子政务也有较强的借鉴意义。例如,供应商声誉可通过在线信誉系统反映,如网络社区成员信誉评分、网络组织信誉等级[30]、买方完成交易所提交的评论文本等[31]。Toms等研究表明,供应商积极曝光问题、第三方评价信息及提供准确的资源链接是塑造良好信誉的重要因素[32]。而另一项针对eBay用户的调查发现,卖家的正面评级会带来高水平的信任,但负面评级比正面对用户信任的影响更大[33]。此外,在网络交易环境下,若卖方提供刻意虚假的积极反馈,会对用户信任产生负面影响,当反馈真实的评价时则相反[34]。影响被信任对象特征的因素如表2所示。

表2   被信任对象特征影响因素

Table 2  The Influencing Factors of Trusted Object

影响因素具体内容文献来源
网络组织自身特征线上简介Ratnasingham[23](1998)
官方社交媒体账户及呈现形式Mainka等[24](2014)
完整的组织资料介绍Shankar等[25](2002)
发布值得信赖的照片和美观的头像Bente等[26](2012); Chen等[27](2014)
网络组织声望著名而有声望的组织搭建的网站Sillence等[28](2006)
组织规模、知名度、品牌Laroche等[29](2012)
用户对网络组织的可靠性评价Bente等[26](2012)
网络社区成员评分,组织信誉等级Jøsang等[30](2007)
买方完成交易所提交的评论文本Pavlou等[31](2006)
积极曝光问题,对第三方评价信息提供准确的资源链接Toms等[32](2004)
正面评级与负面评级Ba等[33](2002)
提供刻意虚假的或真实的反馈Utz等[34](2009)

新窗口打开| 下载CSV


3.3 技术平台特征因素

技术平台对促进互联网交互行为具有重要作用。随着用户对于平台建设、服务质量、体验要求逐渐增加,平台特征对信任的影响逐渐受到学界的重视。

首先,在技术平台体验方面,现有指标主要包括平台易用性[35]、安全性[36]、信息时效性[37]等。其次,也有学者关注不同网络应用中的结构模式和传播特征,如电子商务平台搭建会影响消费者的购物心理,当用户有效感知整体网络购物环境成熟可靠,在线交互行为会逐渐流行起来。具体来讲,宏观层面包括社会临场感知[38]、个性化设计特征[39]、第三方保障感知[40]等网络情境因素;微观层面如页面的元素特征[41]、网站的外观设计、网页的开发模式、图片的剪辑和颜色[42]等图像特征,影响用户交互印象与透明度感知[43],进而对在线信任产生影响。最后,在平台功能与服务质量方面,包括网站的导航设计、搜索功能和网站地图等[44]。Lin在研究中发现,互联网用户更倾向于信任提供零错误的信息、英文拼写和语法规则正确,且兼具时效性、准确性和完整性信息的网站[45]。影响技术平台特征的因素如表3所示。

表3   技术平台特征影响因素

Table 3  The Influencing Factors of Technology Platform

影响因素具体内容参考文献
技术平台体验易用性Bart等[35](2005)
安全性Kang等[36](2016)
信息时效性廖振松等[37](2006)
用户的交互印象与透明度感知Zhou等[43](2018)
技术平台结构模式和传播特征体验中的社会临场感知Riegelsberger等[38](2007)
个性化设计特征Briggs等[39](2002)
第三方保障感知Wang等[40](2005)
页面的元素特征Fogg[41](2003)
技术平台功能与服务质量外观设计、图片剪辑和网页配色Nitse等[42](2004)
网站的导航设计、搜索功能和网站地图陈明亮等[44](2009)
提供零错误的信息、英文拼写和语法规则正确Lin[45](2007)
提供时效性、准确性、完整性信息Lin[45](2007)

新窗口打开| 下载CSV


3.4 外部环境特征因素

虚拟环境下使用者行为一般由数字化信息作为媒介,因此需要健全的法律规章[46]、平台的担保承诺、社区成员的互动环境[47]等制度,促进用户对外部环境的信任。

McKnight等将该因素划分为以结构保证为基础和以情境正当为基础两维度[48]。结构保证是指基于完善的制度和担保书等特定结构,使用户相信自身权益受到保障,进而对网络环境安全性和保障性产生信任。健全的法律保障[49]、提供长期负责的承诺、健全的规章制度、完整的契约合同[50]、严格的认证反馈机制[51]皆归于此类;情境正当即因为采用正当的流程和环节促成网络交互的成功。研究者主要将焦点集中在监控机制的建立上[52],强调按照既定的规则运行,加强对社区网站的监控,使供应商能够系统掌握用户的参与行为。同时,对不良行为进行处罚,对友好的行为施行奖励,确保网站顺利运行,当用户完成一次顺利的交互体验,就会增加信任感[53]。在公共管理领域,政府部门提供的外部环境特征,主要集中在依据相关法律法规行使权力的政府职能[54],网络健康文化的塑造,包括打击网络犯罪、处罚不当言论、化解公职系统的网络信任危机,促进互联网社区健康运行[55]

互联网环境的潜在风险因素主要包括网络伦理道德风险[56]、用户个人隐私泄露[57]、交易支付安全等[58],学界开展了一些具有特色的研究。例如,Rifon等研究互联网上个人信息(姓名、电话、住址)的泄露对用户信任的负面影响[59];Hung等通过分析在线支付系统中银行和报税账号泄露的案例,量化对用户信任消极影响的结果[60]。Pan等将问题细化到网站使用初期的用户隐私声明,隐私声明内容越完善,用户对网站的可信度越高[61]。Kimery等着重分析具有第三方认证担保对用户信任的影响[62]。Nissenbaum在一项问卷调查实验中发现,持续收到垃圾邮件的困扰与Cookies历史记录被黑客程序恶意攻击,是影响用户信任的两项主要因素[63]。Joseph-Vaidyan研究发现,对于电子商务客户而言,卖方存在机会主义行为是用户最担心的潜在风险[64],因此买方十分重视卖方的验证信息,如果平台能够采取一定的安全措施,可以加强用户对平台的信任。影响外部环境特征的因素如表4所示。

表4   外部环境特征影响因素

Table 4  The Influencing Factors of External Environment

影响因素具体内容参考文献
以结构保证为基础的环境健全的法律保障Koehn[49](2003)
提供长期负责的承诺、健全的规章制度、完整的契约合同Flavián等[50](2006)
严格的认证反馈机制Verhagen等[51](2006)
以情境正当为基础的环境网站监控机制的建立Wu等[52](2008)
对不良行为的处罚措施,对友好行为的奖励措施Chiu等[53](2010)
依据相关法律法规行使权力的政府职能Bélanger等[54](2008)
网络健康文化的塑造Johnson[55](1997)
打击网络犯罪、处罚不当言论、化解公职系统的网络信任危机Johnson[55](1997)
潜在风险因素网络伦理道德风险廖成林[56](2004)
用户个人隐私泄露Hoffman等[57](2009)
网络交易支付安全Kim等[58](2010)
个人信息(姓名、电话、住址)泄露Rifon等[59](2005)
在线支付系统银行和报税账号泄露Hung等[60](2006)
完善的用户隐私声明Pan等[61](2006)
具有第三方认证担保Kimery等[62](2002)
持续收到垃圾邮件的困扰,Cookies历史记录被黑客程序恶意攻击Nissenbaum[63](2004)
卖方存在机会主义行为Joseph-Vaidyan[64](2008)

新窗口打开| 下载CSV


3.5 网络在线信任的影响效应

技术的发展使得学界对网络的态度逐渐从最初的“工具论”立场转变为一种能够改变社会发展方向的“革命性”力量。人们与网络交互的途径除互联网环境之外,还包括信息传递媒介和其他交往工具。因此,不同媒介模式下的信任也会反作用于对用户感知、后续行为和使用态度的影响[65]。理性行动理论和计划行为理论指出,信念、意图、行为之间存在密切关系,信念对行动产生作用,影响行动意图,促进实践行动[66]。该理论在信任研究获得广泛应用,并衍生出较多变量,常表现为使用意愿、使用行为和使用感受。

首先,用户使用意愿体现为信任将影响其对于网站的评价及选择,进而影响后续的操作决策,具体表现为对网站积极的谈论和评价[67]、重复性访问特定网站[68]、将网站推荐给他人[69]。其次,用户使用行为可细化为对信息的查询意愿[70]、网络在线忠诚[71]、网络在线粘性[72]等变量,也有研究者将使用行为划分为技术滥用、技术贬用、技术不用和技术适当使用4种形态。最后,用户使用感受作为施信者的一种主观感知或情感体验,主要包括技术使用的满意度、愉悦感[73]、满足感[74]等。在线信任的影响效应如表5所示。

表5   网络在线信任的影响效应

Table 5  The Influencing Effect of Online Trust

影响效应具体内容参考文献
用户使用意愿对网站积极的谈论和评价Hargittai等[67](2010)
重复性访问特定网站Urban等[68](2009)
将网站推荐给他人Smith等[69](2005)
用户使用行为对信息查询的意愿McKnight等[70](2002)
网络在线忠诚Kim等[71](2009)
网络在线粘性Xu等[72](2011)
用户使用感受满意度Kim等[71](2009)
愉悦感Flavián等[73](2006)
满足感Lin等[74](2014)

新窗口打开| 下载CSV


4 新兴技术对在线信任的影响与重构

随着以大数据、区块链为代表的新一代ICT技术与社会的深度融合,“数据民主化”背景下的学术研究呈现出多种不同的视角。基于大数据分析的文本挖掘法是新型信任研究领域的代表方法。应用信息检索技术,从海量文本数据中提取未知、隐含且有效的信息,将文本数据转化为能描述文本内容的结构化数据,然后利用聚类、分类技术和关联分析等挖掘技术形成结构化文本,以此发现新的概念或关系。该方法最早由Feldman等提出,其中包括文本情感分析、社会网络分析、概率主题模型等[75]

首先,在采用大数据挖掘与分析用户信任方面,沙勇忠等采用文本情感分析方法,以雅安地震后中国红十字会的信任危机为案例,对微博的相关评论数据开展信任度测量,该方法能够准确将突发公共事件后的情况反映于网络环境中,从而对网民的信任产生迅速、直接的影响[76]。Du等以电子商务为例,通过分析用户之间的历史行为数据,挖掘用户的影响力与个体之间的信任关系,构建信任网络图谱,并将网络中节点间信任度的计算转化为节点在网络中的影响力的计算,研究发现,影响力越大越容易受到其他用户的信任[77]。Huang等使用概率主题模型,挖掘用户评论文本中隐含的主题分布,刻画人们的信任偏好和商品画像,并将主题强度与评分相关联,探究用户的信任指数[78]。卢竹兵等提出一种将信任关系与相似度有效结合的模型,通过信任关系的传递规则,得到用户间的间接信任关系,在没有交互历史的情况下获取信任关系[79]

同时,大数据技术对社会信用体系的构建作用日益凸显,相关研究成果主要体现在网络征信活动的各个环节。王平安等运用大数据技术建设数据平台、完善社会信任的网络征信环节,并借助大数据的预测能力进行信用等级评价,预警潜在信用风险[80]。在新技术对网络信用数据的收集方面,齐文昊发现,信用数据的收集由传统的通过信用主体接触获得信用数据,向以采集互联网平台留痕的行为数据方式转变;在信用信息来源上,新技术突破了传统的线下金融机构信贷记录单一的数据来源局限,而是使用互联网留痕的财务、消费、社交记录等更大范围、更多维度的信用信息来源[81]。对网络信用数据的评价机制方面,信用评价主体由政府、央行征信管理局等传统政府主导模式,向以央行征信为中心、具备雄厚数据和网络技术实力的互联网征信平台(如腾讯信用、芝麻信用、前海征信等)多方参与的市场化模式转变[82]

最后,区块链作为信任研究领域的新兴热点技术,当前研究主要将区块链视为一种数字信任技术,围绕区块链技术特征,讨论其对信任问题的影响。从研究主题分析,以区块链技术与信任建设相关的研究分布在区块链对供应链物流[83]、支付结算、交易评价等对电子商务信用的影响,以及互联网金融[84]、共享经济[85]、纳税缴费[86]、能源交易[87]等领域中的信任问题研究等。从作用机制分析,研究主要从去中心化的信用数据开放共享[88]、不可篡改的数据存储与验证[89]、数学算法背书的去第三方信用中介[90]、基于共识机制与智能合约的信用评价[91]等维度,讨论区块链的信任构建作用。新兴技术对在线信任的影响与重构如表6所示。

表6   新兴技术对在线信任的影响与重构

Table 6  The Impact of New Technologies on Online Trust

技术类型与影响因素具体内容参考文献
大数据挖掘与分析用户
信任数据
对用户评论数据的信任度测量沙勇忠等[76](2015)
挖掘用户的影响力与个体之间的信任关系Du等[77](2014)
挖掘评论数据隐含的主题分布, 探究用户信任指数Huang等[78](2013)
提出一种将信任关系与相似度有效结合的模型,在没有交互历史的情况下获取信任关系卢竹兵等[79](2008)
大数据技术对社会信用
体系的构建作用
建设数据平台,完善网络征信环节王平安等[80](2016)
采集互联网平台留痕的行为数据齐文昊[81](2018)
使用互联网留痕的财务、消费、社交记录等更大范围、更多维度的信用信息来源齐文昊[81](2018)
信用评价主体转向以央行征信为中心、实力雄厚的互联网征信平台多方参与的市场化模式王申玥[82](2018)
区块链技术对信任作用
机制的影响
去中心化的信用数据开放共享琚春华等[88](2019)
不可篡改的数据存储与验证韩菊茹等[89](2019)
数学算法背书的去第三方信用中介冯文芳等[90](2017)
基于共识机制与智能合约的信用评价王缵等[91](2018)

新窗口打开| 下载CSV


5 总结和展望

通过研究的回顾表明,网络在线信任研究已取得丰硕成果。在线信任的本质意义在于解释互联网背景下人们对网络技术的信任信念和意图,这些行为受到信任者、被信任对象、技术平台和外部环境4项情境维度的影响,分别对应行为主体、行为客体、人机交互和人与环境4个层面的相关因素和作用机制,以及新兴技术背景下带来的影响与重构。当前研究的进展主要体现为全方位、多层次的研究视角,将信任理论与互联网技术紧密结合,必然受到越来越多理论和实践者的重视,对其研究探讨也将逐渐深入。未来研究可以尝试从理论模型、研究方法和研究视角三个层面持续改进和完善。

(1)扩展理论模型。在对用户线上信任行为进行深入调查的基础上,可以借鉴已有理论成果,发现和确认新的影响因素和变量,并通过科学合理的方式进行反复验证,实现对现有理论系统地拓展、深化和整合。一方面,在深入相关研究寻找新变量的过程中,需要尝试探索不同的理论解释,将现象概念化和理论化,以此提高变量的合理性。不同理论解释变量的侧重点不同,将多元理论的核心要素整合到现有模型,可以有效提高在不同应用场景下的解释张力。另一方面,需要加强对不同变量之间相互作用的关注程度,新变量的引入使得变量之间指向关系更多、结构更复杂,未来研究可以考虑引入更多中介变量,揭示自变量对因变量的作用机制,或引入调节变量限定自变量与因变量关系的边界,实现模型的优化扩展。

(2)采用多元的研究方法。单一的信任量表和问卷调查已不能展现研究对象动态变化的过程和全貌,难以支撑研究人员对用户线上信任过程及影响因素做出全面而系统的分析。因此,未来应更多考虑运用数据挖掘、大数据分析、虚拟仿真、扎根理论等多种方法,全面追踪用户在互联网使用过程中的感觉、认知和情感体验。例如,互联网用户交互模式深入各领域,大数据技术将对用户接受这次服务而产生的线上信任程度等真实情感倾向的数据进行智能识别与深度学习,持续帮助网络组织或供应商改进与完善网络设定。研究不仅限于某一种方法,而是尽可能地将定性方法与定量方法相结合,注重使用多元化方法共同解释某一现象,实现方法间彼此验证,提高研究结论的普适性和科学性。

(3)探索更多的研究视角。一方面,从研究的学科视角来看,在线信任的理论研究呈现出从电子商务至电子政务领域发展的态势,后续研究可以继续尝试从政府或电子政务视角切入,同时也可以将电子商务与电子政务的研究关联起来。另一方面,从研究的应用场景来看,当前技术背景下的信任问题,多聚焦于用户对互联网技术的网站信任。针对新一代信息技术的信任,例如用户对于网络社交媒体技术的信任、对网络组织或供应商采纳区块链等技术的信任研究,大多处于技术探索和概念构想阶段,在实证领域仍处于空白地带。这也为后续的理论探索提供了充足的空间,不仅能够有效弥补其他信息技术信任研究的不足,而且能够深化现有的网络在线信任研究。

作者贡献声明:

张毅:设计研究思路,修改论文;

杨奕:文献收集分析,论文起草及修改;

邓雯:论文修改及最终版本修订。

利益冲突声明:

所有作者声明不存在利益冲突关系。

参考文献

陈剩勇, 卢志朋.

信息技术革命、公共治理转型与治道变革

[J]. 公共管理与政策评论, 2019,8(1):40-49.

[本文引用: 1]

( Chen Shengyong, Lu Zhipeng.

Information Technology Revolution, Public Governance Transformation and Governance Reform

[J]. Public Administration and Policy Review, 2019,8(1):40-49.)

[本文引用: 1]

张毅, 杨奕, 邓雯.

政策与部门视角下中国网络空间治理——基于LDA和SNA的大数据分析

[J]. 北京理工大学学报:社会科学版, 2019,21(2):127-136.

[本文引用: 1]

( Zhang Yi, Yang Yi, Deng Wen.

China’s Cyber Space Governance from the Perspective of Policy and Departments——Big Data Analysis Based on LDA and SNA

[J]. Journal of Beijing Institute of Technology: Social Sciences Edition, 2019,21(2):127-136.)

[本文引用: 1]

Hoffman D L, Novak T P, Peralta M.

Building Consumer Trust Online

[J]. Communications of the ACM, 1999,42(4):80-85.

[本文引用: 2]

Simmel G. 货币哲学[M]. 陈戎女译.北京: 华夏出版社, 2002.

[本文引用: 1]

( Simmel G. Philosophie des Geldes[M].Translated by Chen Rongnv. Beijing: Huaxia Publishing House, 2002.)

[本文引用: 1]

弗朗西斯·福山. 大分裂:人类本性与社会秩序的重建[M]. 刘榜离,王胜利译.北京:中国社会科学出版社, 2016.

[本文引用: 1]

( Fukuyama F. The Great Disruption: Human Nature and the Reconstitation of Social Order[M]. Translated by Liu Bangli, Wang Shengli. Beijing: China Social Science Press, 2016.)

[本文引用: 1]

Mayer R C, Davis J H, Schoorman F D.

An Integrative Model of Organizational Trust

[J]. Academy of Management Review, 1995(20):709-734.

[本文引用: 1]

Luhmann N.

Familiarity, Confidence, Trust: Problems and Alternatives[A]// Trust: Making and Breaking Cooperative Relations

[M]. Blackwell, 1988.

[本文引用: 1]

McKnight D H, Choudhury V, Kacmar C.

Developing and Validating Trust Measures for E-Commerce:An Integrative Typology

[J]. Information Systems Research, 2002,13(3):334-359.

[本文引用: 1]

Salam A F, Iyer L, Palvia P, et al.

Trust in E-commerce

[J]. Communications of the ACM, 2005,48(2):72-77.

[本文引用: 2]

Teo T S H, Liu J.

Consumer Trust in E-commerce in the United States, Singapore and China

[J]. Omega, 2007,35(1):22-38.

[本文引用: 2]

McKnight D H.

Trust in Information Technology

[J]. The Blackwell Encyclopedia of Management, 2005,7:329-331.

[本文引用: 3]

Gefen D.

E-commerce: The Role of Familiarity and Trust

[J]. Omega, 2000,28(6):725-737.

[本文引用: 2]

Lee M K O, Turban E.

A Trust Model for Consumer Internet Shopping

[J]. International Journal of Electronic Commerce, 2001,6(1):75-91.

[本文引用: 2]

Gefen D, Karahanna E, Straub D W.

Trust and TAM in Online Shopping: An Integrated Model

[J]. MIS Quarterly, 2003,27(1):51-90.

[本文引用: 2]

Van Der Heijden H, Verhagen T, Creemers M.

Understanding Online Purchase Intentions: Contributions from Technology and Trust Perspectives

[J]. European Journal of Information Systems, 2003,12(1):41-48.

[本文引用: 2]

Corbitt B J, Thanasankit T, Yi H.

Trust and E-commerce: A Study of Consumer Perceptions

[J]. Electronic Commerce Research and Applications, 2003,2(3):203-215.

DOI:10.1016/S1567-4223(03)00024-3      URL     [本文引用: 2]

Wang W, Benbasat I.

Attributions of Trust in Decision Support Technologies: A Study of Recommendation Agents for E-commerce

[J]. Journal of Management Information Systems, 2008,24(4):249-273.

DOI:10.2753/MIS0742-1222240410      URL     [本文引用: 2]

Siau K, Shen Z.

Building Customer Trust in Mobile Commerce

[J]. Communications of the ACM, 2003,46(4):91-94.

[本文引用: 2]

Metzger M J.

Effects of Site, Vendor, and Consumer Characteristics on Web Site Trust and Disclosure

[J]. Communication Research, 2006,33(3):155-179.

[本文引用: 3]

Koufaris M, Hampton-Sosa W.

The Development of Initial Trust in an Online Company by New Customers

[J]. Information & Management, 2004,41(3):377-397.

[本文引用: 2]

Aiken K D, Boush D M.

Trustmarks, Objective-Source Ratings, and Implied Investments in Advertising: Investigating Online Trust and the Context-Specific Nature of Internet Signals

[J]. Journal of the Academy of Marketing Science, 2006,34(3):308-323.

DOI:10.1177/0092070304271004      URL     [本文引用: 2]

Lee K Y, Huang H L, Hsu Y C.

Trust, Satisfaction and Commitment-on Loyalty to International Retail Service Brands

[J]. Asia Pacific Management Review, 2007,12(3):161-169.

[本文引用: 1]

Ratnasingham P.

The Importance of Trust in Electronic Commerce

[J]. Internet Research, 1998,8(4):313-321.

DOI:10.1108/10662249810231050      URL     [本文引用: 2]

Mainka A, Hartmann S, Stock W G , et al.

Government and Social Media: A Case Study of 31 Informational World Cities

[C]// Proceedings of the 47th Hawaii International Conference on System Sciences. IEEE, 2014: 1715-1724.

[本文引用: 2]

Shankar V, Urban G L, Sultan F.

Online Trust: A Stakeholder Perspective, Concepts, Implications, and Future Directions

[J]. The Journal of Strategic Information Systems, 2002,11(3-4):325-344.

DOI:10.1016/S0963-8687(02)00022-7      URL     [本文引用: 2]

Bente G, Baptist O, Leuschner H.

To Buy or not to Buy: Influence of Seller Photos and Reputation on Buyer Trust and Purchase Behavior

[J]. International Journal of Human-Computer Studies, 2012,70(1):1-13.

DOI:10.1016/j.ijhcs.2011.08.005      URL     [本文引用: 3]

Reputation scores and seller photos are regarded as two types of signals promoting trust in e-commerce. Little is known about their differential impact when co-occurring in online transactions. Using a computer-mediated trust game, the current study combined three photo conditions (trustworthy, untrustworthy and no seller photo) with three reputation conditions (positive, negative and no seller reputation) in a 3 x 3 within-subject design. Buyers' ratings of trust and number of purchases served as dependent variables. Significant main effects were found for reputation scores and photos on both dependent variables and there was no interaction effect. Trustworthy photos and positive reputation contributed towards buyers' trust and higher purchase rates. Surprisingly, neither untrustworthy photos nor negative reputation performed worse than missing information. On the contrary, completely missing information (no reputation, no photo) led to distrust and differed significantly from completely negative information (low reputation, untrustworthy photo), which resulted in a neutral trust level. Overall, the data suggest that not only does positive information increase trust, but mere uncertainty reduction regarding a seller can also contribute towards trust in online transactions. (C) 2011 Elsevier Ltd.

Chen X P, Eberly M B, Chiang T J, et al.

Affective Trust in Chinese Leaders: Linking Paternalistic Leadership to Employee Performance

[J]. Journal of Management, 2014,40(3):796-819.

DOI:10.1177/0149206311410604      URL     [本文引用: 2]

Adopting the theoretical framework of social exchange, the authors used the two dominant Confucian valueshierarchy and relationalismto theorize the mediating role of affective trust in the relationship between paternalistic leadership and employee in-role and extra-role performance in the Chinese organizational context. Data from 601 supervisor-subordinate dyads of 27 companies in a Taiwanese conglomerate revealed that while the benevolence and morality dimensions of paternalistic leadership are positively associated with both in-role and extra-role performance, the authoritarian paternalistic leadership dimension is negatively related to subordinate performance. Furthermore, affective trust mediated the relationship between benevolent and moral paternalistic leadership and employee performance but did not mediate the relationship between authoritarianism and employee performance. The theoretical and practical implications of these findings are discussed in the Chinese context and beyond.

Sillence E, Briggs P, Harris P, et al.

A Framework for Understanding Trust Factors in Web-based Health Advice

[J]. International Journal of Human-Computer Studies, 2006,64(8):697-713.

DOI:10.1016/j.ijhcs.2006.02.007      URL     [本文引用: 2]

Laroche M, Habibi M R, Richard M O, et al.

The Effects of Social Media Based Brand Communities on Brand Community Markers, Value Creation Practices, Brand Trust and Brand Loyalty

[J]. Computers in Human Behavior, 2012,28(5):1755-1767.

DOI:10.1016/j.chb.2012.04.016      URL     [本文引用: 2]

Social media based brand communities are communities initiated on the platform of social media. In this article, we explore whether brand communities based on social media (a special type of online brand communities) have positive effects on the main community elements and value creation practices in the communities as well as on brand trust and brand loyalty. A survey based empirical study with 441 respondents was conducted. The results of structural equation modeling show that brand communities established on social media have positive effects on community markers (i.e., shared consciousness, shared rituals and traditions, and obligations to society), which have positive effects on value creation practices (i.e., social networking, community engagement, impressions management, and brand use). Such communities could enhance brand loyalty through brand use and impression management practices. We show that brand trust has a full mediating role in converting value creation practices into brand loyalty. Implications for practice and future research opportunities are discussed. (C) 2012 Elsevier Ltd.

Jøsang A, Ismail R, Boyd C.

A Survey of Trust and Reputation Systems for Online Service Provision

[J]. Decision Support Systems, 2007,43(2):618-644.

DOI:10.1016/j.dss.2005.05.019      URL     [本文引用: 2]

Abstract

Trust and reputation systems represent a significant trend in decision support for Internet mediated service provision. The basic idea is to let parties rate each other, for example after the completion of a transaction, and use the aggregated ratings about a given party to derive a trust or reputation score, which can assist other parties in deciding whether or not to transact with that party in the future. A natural side effect is that it also provides an incentive for good behaviour, and therefore tends to have a positive effect on market quality. Reputation systems can be called collaborative sanctioning systems to reflect their collaborative nature, and are related to collaborative filtering systems. Reputation systems are already being used in successful commercial online applications. There is also a rapidly growing literature around trust and reputation systems, but unfortunately this activity is not very coherent. The purpose of this article is to give an overview of existing and proposed systems that can be used to derive measures of trust and reputation for Internet transactions, to analyse the current trends and developments in this area, and to propose a research agenda for trust and reputation systems.

Pavlou P A, Dimoka A.

The Nature and Role of Feedback Text Comments in Online Marketplaces: Implications for Trust Building, Price Premiums, and Seller Differentiation

[J]. Information Systems Research, 2006,17(4):392-414.

DOI:10.1287/isre.1060.0106      URL     [本文引用: 2]

Toms E G, Taves A R.

Measuring User Perceptions of Web Site Reputation

[J]. Information Processing and Management, 2004,40(2):291-317.

DOI:10.1016/j.ipm.2003.08.007      URL     [本文引用: 2]

Abstract

In this study, we compare a search tool, TOPIC, with three other widely used tools that retrieve information from the Web: AltaVista, Google, and Lycos. These tools use different techniques for outputting and ranking Web sites: external link structure (TOPIC and Google) and semantic content analysis (AltaVista and Lycos). TOPIC purports to output, and highly rank within its hit list, reputable Web sites for searched topics. In this study, 80 participants reviewed the output (i.e., highly ranked sites) from each tool and assessed the quality of retrieved sites. The 4800 individual assessments of 240 sites that represent 12 topics indicated that Google tends to identify and highly rank significantly more reputable Web sites than TOPIC, which, in turn, outputs more than AltaVista and Lycos, but this was not consistent from topic to topic. Metrics derived from reputation research were used in the assessment and a factor analysis was employed to identify a key factor, which we call ‘repute’. The results of this research include insight into the factors that Web users consider in formulating perceptions of Web site reputation, and insight into which search tools are outputting reputable sites for Web users. Our findings, we believe, have implications for Web users and suggest the need for future research to assess the relationship between Web page characteristics and their perceived reputation.

Ba S, Pavlou P A.

Evidence of the Effect of Trust Building Technology in Electronic Markets: Price Premiums and Buyer Behavior

[J]. MIS Quarterly, 2002,26(3):243-268.

DOI:10.2307/4132332      URL     [本文引用: 2]

Utz S, Matzat U, Snijders C.

On-line Reputation Systems: The Effects of Feedback Comments and Reactions on Building and Rebuilding Trust in On-line Auctions

[J]. International Journal of Electronic Commerce, 2009,13(3):95-118.

DOI:10.2753/JEC1086-4415130304      URL     [本文引用: 2]

Bart Y, Shankar V, Sultan F, et al.

Are the Drivers and Role of Online Trust the Same for All Web Sites and Consumers? A Large-scale Exploratory Empirical Study

[J]. Journal of Marketing, 2005,69(4):133-152.

DOI:10.1509/jmkg.2005.69.4.133      URL     [本文引用: 2]

Kang M, Shin D H, Gong T.

The Role of Personalization, Engagement, and Trust in Online Communities

[J]. Information Technology & People, 2016,29(3):580-596.

[本文引用: 2]

廖振松, 金海, 李赤松, .

自动信任协商及其发展趋势

[J]. 软件学报, 2006,17(9):1933-1948.

[本文引用: 2]

( Liao Zhensong, Jin Hai, Li Chisong, et al.

Automated Trust Negotiation and Its Development Trend

[J]. Journal of Software, 2006,17(9):1933-1948.)

[本文引用: 2]

Riegelsberger J, Sasse M A, McCarthy J D.

Trust in Mediated Interactions[A]// Oxford Handbook of Internet Psychology

[M]. Oxford, 2007: 53-70.

[本文引用: 2]

Briggs P, Burford B, De Angeli A, et al.

Trust in Online Advice

[J]. Social Science Computer Review, 2002,20(3):321-332.

DOI:10.1177/089443930202000309      URL     [本文引用: 2]

Wang Y D, Emurian H H.

An Overview of Online Trust: Concepts, Elements, and Implications

[J]. Computers in Human Behavior, 2005,21(1):105-125.

DOI:10.1016/j.chb.2003.11.008      URL     [本文引用: 2]

Abstract

Lack of trust has been repeatedly identified as one of the most formidable barriers to people for engaging in e-commerce, involving transactions in which financial and personal information is submitted to merchants via the Internet. The future of e-commerce is tenuous without a general climate of online trust. Building consumer trust on the Internet presents a challenge for online merchants and is a research topic of increasing interest and importance. This paper provides an overview of the nature and concepts of trust from multi-disciplinary perspectives, and it reviews relevant studies that investigate the elements of online trust. Also, a framework of trust-inducing interface design features articulated from the existing literature is presented. The design features were classified into four dimensions, namely (1) graphic design, (2) structure design, (3) content design, and (4) social-cue design. By applying the design features identified within this framework to e-commerce web site interfaces, online merchants might then anticipate fostering optimal levels of trust in their customers.

Fogg B J .

Prominence-interpretation Theory: Explaining How People Assess Credibility Online

[C]// Proceedings of the 2003 CHI-Extended Abstracts on Human Factors in Computing Systems. ACM, 2003: 722-723.

[本文引用: 2]

Nitse P S, Parker K R, Krumwiede D, et al.

The Impact of Color in the E-commerce Marketing of Fashions: An Exploratory Study

[J]. European Journal of Marketing, 2004,38(7):898-915.

DOI:10.1108/03090560410539311      URL     [本文引用: 2]

Zhou L, Wang W, Xu J, et al.

Perceived Information Transparency in B2C E-commerce: An Empirical Investigation

[J]. Information and Management, 2018,55(7):912-927.

DOI:10.1016/j.im.2018.04.005      URL     [本文引用: 2]

陈明亮, 蔡日梅.

电子商务中产品推荐代理对消费者购买决策的影响

[J]. 浙江大学学报:人文社会科学版, 2009,39(5):138-148.

[本文引用: 2]

( Chen Mingliang, Cai Rimei.

The Impact of E-commerce Product Recommendation Agent on Consumer Decision Making

[J]. Journal of Zhejiang University:Humanities and Social Sciences, 2009,39(5):138-148.)

[本文引用: 2]

Lin H F.

The Impact of Website Quality Dimensions on Customer Satisfaction in the B2C E-commerce Context

[J]. Total Quality Management and Business Excellence, 2007,18(4):363-378.

DOI:10.1080/14783360701231302      URL     [本文引用: 3]

Cheung C M K, Lee M K O.

Understanding Consumer Trust in Internet Shopping: A Multidisciplinary Approach

[J]. Journal of the American Society for Information Science and Technology, 2006,57(4):479-492.

DOI:10.1002/(ISSN)1532-2890      URL     [本文引用: 1]

严中华, 关士续, 米加宁.

电子商务信任的重要性及其概念辨析

[J]. 科学学与科学技术管理, 2004,25(7):93-96.

[本文引用: 1]

( Yan Zhonghua, Guan Shixu, Mi Jianing.

The Importance of E-commerce Trust and the Concept Analysis

[J]. Science of Science and Management of S.& T., 2004,25(7):93-96.)

[本文引用: 1]

McKnight D H, Cummings L L, Chervany N L.

Initial Trust Formation in New Organizational Relationships

[J]. Academy of Management Review, 1998,23(3):473-490.

DOI:10.5465/amr.1998.926622      URL     [本文引用: 1]

Koehn D.

The Nature of and Conditions for Online Trust

[J]. Journal of Business Ethics, 2003,43(1-2):3-19.

DOI:10.1023/A:1022950813386      URL     [本文引用: 2]

As use of the Internet has increased, many issues of trust have arisen. Users wonder: will my privacy be protected if I provide information to this Internet vendor? Will my credit card remain secure? Should I trust that this party will deliver the goods? Will the goods be as described? These questions are not merely academic. A recent Boston Consulting Group study revealed that one out of ten consumers have ordered and paid for items online that never were delivered (Williams, 2001). This year consumers filed around 11,000 complaints with the Federal Trade Commission alleging auction fraud, a figure up from the 107 lodged in 1997. It is no wonder that people are increasingly worried about whom to trust in online interactions. This paper explores the conditions under which online trust thrives and looks at examples of best and worst corporate practices. Online trust issues arise in a wide array of forums – chat rooms, news postings, e-catalogues, and retail transactions, to name a few. This paper focuses primarily on the online retail market, but the analysis applies to informational and entertainment sites as well.

Flavián C, Guinalíu M. Consumer Trust,

Perceived Security and Privacy Policy: Three Basic Elements of Loyalty to a Web Site

[J]. Industrial Management & Data Systems, 2006,106(5):601-620.

[本文引用: 2]

Verhagen T, Meents S, Tan Y H.

Perceived Risk and Trust Associated with Purchasing at Electronic Marketplaces

[J]. European Journal of Information Systems, 2006,15(6):542-555.

DOI:10.1057/palgrave.ejis.3000644      URL     [本文引用: 2]

Wu J J, Tsang A S L.

Factors Affecting Members’ Trust Belief and Behaviour Intention in Virtual Communities

[J]. Behaviour & Information Technology, 2008,27(2):115-125.

[本文引用: 2]

Chiu C M, Huang H Y, Yen C H.

Antecedents of Trust in Online Auctions

[J]. Electronic Commerce Research and Applications, 2010,9(2):148-159.

DOI:10.1016/j.elerap.2009.04.003      URL     [本文引用: 2]

Bélanger F, Carter L.

Trust and Risk in E-government Adoption

[J]. The Journal of Strategic Information Systems, 2008,17(2):165-176.

DOI:10.1016/j.jsis.2007.12.002      URL     [本文引用: 2]

Johnson D G.

Ethics Online

[J]. Communications of the ACM, 1997,40(1):60-65.

[本文引用: 3]

廖成林.

虚拟营销中信任关系的影响因素与机制

[J].管理世界, 2004(6):149-150.

[本文引用: 2]

( Liao Chenglin.

The Influencing Factors and Mechanism of Trust Relationship in Virtual Marketing

[J]. Management World, 2004(6):149-150.)

[本文引用: 2]

Hoffman R R, Lee J D, Woods D D, et al.

The Dynamics of Trust in Cyberdomains

[J]. IEEE Intelligent Systems, 2009,24(6):5-11.

[本文引用: 2]

Kim C, Tao W, Shin N, et al.

An Empirical Study of Customers’ Perceptions of Security and Trust in E-payment Systems

[J]. Electronic Commerce Research and Applications, 2010,9(1):84-95.

DOI:10.1016/j.elerap.2009.04.014      URL     [本文引用: 2]

Abstract

It is commonly believed that good security improves trust, and that the perceptions of good security and trust will ultimately increase the use of electronic commerce. In fact, customers’ perceptions of the security of e-payment systems have become a major factor in the evolution of electronic commerce in markets. In this paper, we examine issues related to e-payment security from the viewpoint of customers. This study proposes a conceptual model that delineates the determinants of consumers’ perceived security and perceived trust, as well as the effects of perceived security and perceived trust on the use of e-payment systems. To test the model, structural equation modeling is employed to analyze data collected from 219 respondents in Korea. This research provides a theoretical foundation for academics and also practical guidelines for service providers in dealing with the security aspects of e-payment systems.

Rifon N J, LaRose R, Choi S M.

Your Privacy is Sealed: Effects of Web Privacy Seals on Trust and Personal Disclosures

[J]. Journal of Consumer Affairs, 2005,39(2):339-362.

DOI:10.1111/joca.2005.39.issue-2      URL     [本文引用: 2]

Hung S Y, Chang C M, Yu T J.

Determinants of User Acceptance of the E-Government Services: The Case of Online Tax Filing and Payment System

[J]. Government Information Quarterly, 2006,23(1):97-122.

DOI:10.1016/j.giq.2005.11.005      URL     [本文引用: 2]

Pan Y, Zinkhan G M.

Exploring the Impact of Online Privacy Disclosures on Consumer Trust

[J]. Journal of Retailing, 2006,82(4):331-338.

DOI:10.1016/j.jretai.2006.08.006      URL     [本文引用: 2]

Kimery K M, McCord M.

Third Party Assurances: Mapping the Road to Trust in E-retailing

[J]. Journal of Information Technology Theory and Application (JITTA), 2002,4(2):63-82.

[本文引用: 2]

Nissenbaum H.

Will Security Enhance Trust Online, or Supplant It?[A]// Trust and Distrust Within Organizations: Emerging Perspectives, Enduring Questions

[M]. Russell Sage Publications, 2004.

[本文引用: 2]

Joseph-Vaidyan K V.

Factors that Enhance Customer Trust in E-commerce Web Sites: An Examination of E-commerce Success Metrics Using Internet Audience Rating

[D]. Minneapolis: Capella University, 2008.

[本文引用: 2]

季丹.

网络临场感对传播效果的影响研究——基于信任关系的中介效应分析

[J]. 现代传播(中国传媒大学学报), 2016,38(4):142-148.

[本文引用: 1]

( Ji Dan.

Study on the Influence of Network Presence on Communication Effect

[J]. Modern Communication (Journal of Communication University of China), 2016,38(4):142-148.)

[本文引用: 1]

吴晓云, 焦勇兵.

顾客采用网络银行的影响因素研究

[J]. 南开管理评论, 2008,11(6):18-27.

[本文引用: 1]

( Wu Xiaoyun, Jiao Yongbing.

A Study of Factors Affecting Customers’ Adoption of InternetBanking

[J]. Nankai Business Review, 2008,11(6):18-27.)

[本文引用: 1]

Hargittai E, Fullerton L, Menchen-Trevino E, et al.

Trust Online: Young Adults’ Evaluation of Web Content

[J]. International Journal of Communication, 2010,4:468-494.

[本文引用: 2]

Urban G L, Amyx C, Lorenzon A.

Online Trust: State of the Art, New Frontiers, and Research Potential

[J]. Journal of Interactive Marketing, 2009,23(2):179-190.

DOI:10.1016/j.intmar.2009.03.001      URL     [本文引用: 2]

Abstract

Online trust is growing in importance as a topic of study and its influence on Internet marketing strategies is increasing. “Online trust includes consumer perceptions of how the site would deliver on expectations, how believable the site's information is, and how much confidence the site commands." (Bart, Yakov, Venkatesh Shankar, Fareena Sultan, and Glen L. Urban [2005], “Are the Drivers and Role of Online Trust the Same for All Web Sites and Consumers? A Large-Scale Exploratory Empirical Study,” Journal of Marketing, 69(4), 133–152). In this article, we review advances in online trust research based on an overarching framework, outlining the key insights learned so far. These insights include: online trust extends beyond privacy and security, is closely connected to website design, its formation is an ongoing process, and is heterogeneous across individuals and products. We propose several ideas for future research relating to multiple aspects of online research, such as the longitudinal component, multichannel element, global aspect, personalization and cross-disciplinary nature.

Smith D, Menon S, Sivakumar K.

Online Peer and Editorial Recommendations, Trust, and Choice in Virtual Markets

[J]. Journal of Interactive Marketing, 2005,19(3):15-37.

DOI:10.1002/dir.20041      URL     [本文引用: 2]

McKnight D H, Choudhury V, Kacmar C.

The Impact of Initial Consumer Trust on Intentions to Transact with a Web Site: A Trust Building Model

[J]. The Journal of Strategic Information Systems, 2002,11(3-4):297-323.

DOI:10.1016/S0963-8687(02)00020-3      URL     [本文引用: 2]

Kim J, Jin B, Swinney J L.

The Role of Etail Quality, E-satisfaction and E-trust in Online Loyalty Development Process

[J]. Journal of Retailing and Consumer Services, 2009,16(4):239-247.

DOI:10.1016/j.jretconser.2008.11.019      URL     [本文引用: 3]

Abstract

The purpose of this study is to propose and test an integrative model of e-loyalty development process by conceptualizing that e-loyalty is influenced by e-satisfaction, e-trust and multi-dimensional aspects of etail quality. In order to capture the full picture of etail quality, we attempt to cover the complete purchase experience by focusing on four dimensions of etail quality that go beyond website functionality or system quality aspects: fulfillment/reliability, website design, security/privacy and responsiveness. From the 182 usable data obtained, hypotheses are tested using structural equation modeling. The results indicate that the e-loyalty development process is influenced by both e-satisfaction and e-trust. The relationship between e-trust and e-satisfaction is found to be significant as well. Components of etail quality have differing effects on e-satisfaction and e-trust. Evaluation of fulfillment/reliability influences e-satisfaction as well as e-trust. Website design positively influences e-satisfaction while security/privacy has a positive effect on e-trust. However, contrary to our expectation, responsiveness affects neither e-satisfaction nor e-trust. Managerial implications are provided following presentation of the findings.

Xu J, Liu Z .

Study of Online Stickiness: Its Antecedents and Effect on Repurchase Intention

[C]// Proceedings of the 2010 International Conference on e-Education, e-Business, e-Management and e-Learning. 2011.

[本文引用: 2]

Flavián C, Guinalíu M, Gurrea R.

The Role Played by Perceived Usability, Satisfaction and Consumer Trust on Website Loyalty

[J]. Information & Management, 2006,43(1):1-14.

[本文引用: 2]

Lin C, Lekhawipat W.

Factors Affecting Online Repurchase Intention

[J]. Industrial Management & Data Systems, 2014,114(4):597-611.

[本文引用: 2]

Feldman R, Sanger J. The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data[M]. Cambridge University Press, 2007.

[本文引用: 1]

沙勇忠, 阎劲松, 王峥嵘.

雅安地震后红十字会的公众信任研究——基于微博数据的网民情感分析

[J].公共管理学报, 2015, 12(3):93-104, 158-159.

[本文引用: 2]

( Sha Yongzhong, Yan Jinsong, Wang Zhengrong.

Public Trust on the Red Cross Society of China after Ya’an Earthquake——Analysis Based on Sentiment Analysis of Microblog Data

[J]. Journal of Public Management, 2015, 12(3):93-104, 158-159.)

[本文引用: 2]

Du Y P, Huang L, He M.

Collaborative Filteration Recommendation Algorithm Based on Trust Computation

[J]. Pattern Recognition & Artificial Intelligence, 2014,27(5):417-425.

[本文引用: 2]

Huang B, Kimmig A, Getoor L , et al.

A Flexible Framework for Probabilistic Models of Social Trust

[C]// Proceedings of the 2013 International Conference on Social Computing, Behavioral-cultural Modeling, and Prediction. Springer, 2013: 265-273.

[本文引用: 2]

卢竹兵, 唐雁.

一种基于信任网络的协同过滤推荐策略

[J]. 西南师范大学学报: 自然科学版, 2008,33(2):123-126.

[本文引用: 2]

( Lu Zhubing, Tang Yan.

A Trust Network-based Collaborative Filtering Recommendation Strategy

[J]. Journal of Southwest China Normal University: Natural Science Edition, 2008,33(2):123-126.)

[本文引用: 2]

王平安, 万朋飞.

新常态下企业信用科技平台建设路径研究

[J]. 今传媒, 2016,24(1):26-28.

[本文引用: 2]

( Wang Ping’an, Wan Pengfei.

Research on the Construction Path of Enterprise Credit Technology Platform Under the New Normal

[J]. Today’s Massmedia, 2016,24(1):26-28.)

[本文引用: 2]

齐文昊.

互联网征信法律问题研究

[D]. 哈尔滨:黑龙江大学, 2018.

[本文引用: 3]

( Qi Wenhao.

Research on Legal Issues of Internet Credit Investigation

[D]. Harbin: Heilongjiang University, 2018.)

[本文引用: 3]

王申玥.

“互联网+”时代商业银行个人信用评分指标体系创新研究

[D]. 石家庄:河北经贸大学, 2018.

[本文引用: 2]

( Wang Shenyue.

Research on the Innovation of Personal Credit Scoring Index System of Commercial Banks in the Era of “Internet plus”

[D]. Shijiazhuang: Hebei University of Economics and Business, 2018.)

[本文引用: 2]

韩劲松, 徐宏伟.

基于区块链技术构建物流金融公共服务平台

[J].科学技术创新, 2019(24):66-67.

[本文引用: 1]

( Han Jinsong, Xu Hongwei.

Building Logistics Financial Public Service Platform Based on Blockchain Technology

[J]. Scientific and Technological Innovation, 2019(24):66-67.)

[本文引用: 1]

徐若瑜.

区块链对互联网金融的影响及应用

[J].财会通讯, 2017(26):94-97.

[本文引用: 1]

( Xu Ruoyu.

The Influence and Application of Blockchain on Internet Finance

[J]. Communication of Finance and Accounting, 2017(26):94-97.)

[本文引用: 1]

王毛路, 高航, 陆静怡.

区块链和共享经济的关键问题研究

[J].电子政务, 2018(4):42-48.

[本文引用: 1]

( Wang Maolu, Gao Hang, Lu Jingyi.

Research on Key Issues of Blockchain and Sharing Economy

[J]. E-Government, 2018(4):42-48.)

[本文引用: 1]

李万甫, 刘和祥, 邓学飞.

应用区块链技术推动我国纳税缴费信用管理研究

[J].税务研究, 2018(12):78-82.

[本文引用: 1]

( Li Wanfu, Liu Hexiang, Deng Xuefei.

A Research on Promotion of Credit Management of Payment of Tax and Fees Using Blockchain Technology in China

[J]. Taxation Research, 2018(12):78-82.)

[本文引用: 1]

平健, 严正, 陈思捷, .

基于区块链的分布式能源交易市场信用风险管理方法

[J]. 中国电机工程学报, 2019,39(24):7137-7145,7487.

[本文引用: 1]

( Ping Jian, Yan Zheng, Chen Sijie, et al.

Credit Risk Management Method of Distributed Energy Trading Market Based on Blockchain

[J]. Proceedings of the CSEE, 2019,39(24):7137-7145, 7487.)

[本文引用: 1]

琚春华, 邹江波, 傅小康.

融入区块链技术的大数据征信平台的设计与应用研究

[J]. 计算机科学, 2018,45(S2):522-526,552.

[本文引用: 2]

( Ju Chunhua, Zou Jiangbo, Fu Xiaokang.

Design and Application of Big Data Credit Reporting Platform Integrating Blockchain Technology

[J]. Computer Science, 2018,45(S2):522-526, 552.)

[本文引用: 2]

韩菊茹, 纪兆轩, 李一鸣, .

基于区块链的可信日志存储与验证系统

[J]. 计算机工程, 2019,45(5):13-17.

DOI:10.19678/j.issn.1000-3428.0053385      URL     [本文引用: 2]

为满足计算机操作系统中日志数据的完整性保护需求,基于区块链技术,设计并实现可信日志存储与验证系统。存储阶段将本地日志的数据指纹上传至区块链,并保存区块链返回的存储凭证。验证阶段将本地日志的数据指纹与从区块链中获取的数据指纹进行比对,实现日志的完整性验证。分析结果表明,该系统具有去中心化、不可篡改、公开透明等特点,可有效检测日志数据的篡改行为。

( Han Juru, Ji Zhaoxuan, Li Yiming, et al.

Trusted Log Storage and Verification System Based on Blockchain

[J]. Computer Engineering, 2019,45(5):13-17.)

DOI:10.19678/j.issn.1000-3428.0053385      URL     [本文引用: 2]

为满足计算机操作系统中日志数据的完整性保护需求,基于区块链技术,设计并实现可信日志存储与验证系统。存储阶段将本地日志的数据指纹上传至区块链,并保存区块链返回的存储凭证。验证阶段将本地日志的数据指纹与从区块链中获取的数据指纹进行比对,实现日志的完整性验证。分析结果表明,该系统具有去中心化、不可篡改、公开透明等特点,可有效检测日志数据的篡改行为。

冯文芳, 申风平.

区块链:对传统金融的颠覆

[J].甘肃社会科学, 2017(5):239-244.

[本文引用: 2]

( Feng Wenfang, Shen Fengping.

Blockchain: The Subversion of Traditional Finance

[J]. Gansu Social Sciences, 2017(5):239-244.)

[本文引用: 2]

王缵, 田有亮, 李秋贤, .

基于信用模型的工作量证明算法

[J]. 通信学报, 2018,39(8):185-198.

[本文引用: 2]

( Wang Zuan, Tian Youliang, Li Qiuxian, et al.

Proof of Work Algorithm Based on Credit Model

[J]. Journal on Communications, 2018,39(8):185-198.)

[本文引用: 2]

/

版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn